摘要:
Photoactive catalyst and methods of producing H2 by photocatalytic water splitting. The photoactive catalyst includes an upconverting material, a photocatalyst material, and plasmonic metal nanostructures deposited on the surface of the photocatalyst material. The upconverting material is not embedded in or coated by the photocatalyst material. The upconverting material is capable of emitting light at a first wavelength that has an energy equal to or higher than the band gap of the photocatalyst material and at a second wavelength that can be absorbed by the plasmonic metal nanostructures.
摘要:
Photocatalysts and methods of using the same for producing hydrogen and oxygen from water are disclosed. The photocatalysts include photoactive titanium dioxide loaded with 0.5 wt. % to 4 wt. % of a hole-scavenging material comprising cobalt oxide and 0.1 wt. % to 1 wt. % of palladium (Pd) and/or a Pd—Co alloy.
摘要:
Disclosed is a photocatalyst, and methods for its use, that includes a photoactive material comprising a photonic band gap and an electronic band gap, wherein the photonic band gap at least partially overlaps with the electronic band gap, and an electrically conductive material deposited on the photoactive material.
摘要:
Certain embodiments of the invention are directed to a water splitting photo electrochemical (PEC) thin film comprising metal nanostructures positioned between a CdxZn1−xS semiconductor and a ZnO semiconductor to form a Z-scheme for total water splitting.
摘要:
Photocatalysts for water-splitting to produce hydrogen and oxygen, methods of making and uses thereof are described. The photocatalyst has a catalytic non-oxide metal semiconductor nanostructure attached to a zero valence metal (M○) support. Thecatalyst is capable of catalyzing the production of hydrogen and oxygen from water.
摘要:
Photo-thermal catalysts and methods of use are described. The photo-thermal catalyst can include a photo-active metal oxide and, optionally, a plasmon resonance material. The photo-thermal catalyst has a temperature of 150° C. to 400° C. and is in contact with electromagnetic radiation. The photo-thermal catalyst can be used in a photo-thermal method to generate hydrogen from alcohols.