Abstract:
A piezoelectric composite comprising (a) an olefin copolymer and (b) a plurality of piezoelectric filler particles is disclosed. Each of the plurality of piezoelectric filler particles can be dispersed in the olefin copolymer. Also disclosed are films containing such piezoelectric composites and methods of preparing such films.
Abstract:
A piezoelectric composite material is formed from a cellulosic material and an inorganic piezoelectric material dispersed in a piezoelectric polymer. The piezoelectric polymer of the composite material has a dielectric constant of from 10 or more. A method of making a piezoelectric is also disclosed wherein a matrix of a cellulosic material, an inorganic piezoelectric material, and a piezoelectric polymer material is formed. The matrix is formed into a piezoelectric composite body.
Abstract:
A piezoelectric composite material is formed from a cellulosic material and an inorganic piezoelectric material dispersed in a piezoelectric polymer. The piezoelectric polymer of the composite material has a dielectric constant of from 10 or more. A method of making a piezoelectric is also disclosed wherein a matrix of a cellulosic material, an inorganic piezoelectric material, and a piezoelectric polymer material is formed. The matrix is formed into a piezoelectric composite body.
Abstract:
Disclosed is a wavelength conversion material for use in a photo-bioreactor for growing phototrophic organisms. The wavelength conversion material includes an organic fluorescent dye and a polymeric matrix, wherein the organic fluorescent dye is solubilized in the polymeric matrix. The wavelength-conversion material is capable of absorbing light comprising a wavelength of 280 to 650 nm and emitting the absorbed light at a wavelength of 400 to 800 nm.