Abstract:
An organic light-emitting display apparatus includes a buffer layer formed on a substrate; a gate insulating layer formed over the buffer layer; an interlayer insulating layer formed over the gate insulating layer; a first opening formed through the gate insulating layer and the interlayer insulating layer; a first organic insulating layer formed over the interlayer insulating layer and including a second opening that overlaps with the first opening; a pixel electrode formed in the second opening, and directly contacting the buffer layer; a light emission layer formed over the pixel electrode; and an opposite electrode formed over the light emission layer.
Abstract:
An OLED apparatus includes: a substrate; a TFT on the substrate and comprising an active layer, a first interlayer insulating layer between the gate electrode and the source and drain electrodes and comprising an inorganic material; a second interlayer insulating layer between the first interlayer insulating layer and the source and drain electrodes and comprising an organic material; a first organic layer covering the source and drain electrodes; a second organic layer on the first organic layer; a capacitor comprising a first electrode comprising a same material as the gate electrode, and a second electrode comprising a same material as the source and drain electrodes; a pixel electrode in an opening in an area that does not overlap with the TFT and the capacitor, and contacting one of the source and drain electrodes; an emission layer on the pixel electrode; and an opposite electrode on the emission layer.
Abstract:
An organic light-emitting display apparatus, including a substrate including a display region and a fan-out region outside the display region; a plurality of pixel electrodes in the display region of the substrate; a plurality of first signal lines connected electrically to the pixel electrodes in the display region in one direction and constituting a plurality of first line portions in the fan-out region; a plurality of second signal lines connected electrically to the pixel electrodes in the display region to intersect the first signal lines and constituting a plurality of second line portions in the fan-out region; and a dummy pattern between the first line portions.
Abstract:
An OLED apparatus includes: a substrate; a TFT on the substrate and comprising an active layer, a first interlayer insulating layer between the gate electrode and the source and drain electrodes and comprising an inorganic material; a second interlayer insulating layer between the first interlayer insulating layer and the source and drain electrodes and comprising an organic material; a first organic layer covering the source and drain electrodes; a second organic layer on the first organic layer; a capacitor comprising a first electrode comprising a same material as the gate electrode, and a second electrode comprising a same material as the source and drain electrodes; a pixel electrode in an opening in an area that does not overlap with the TFT and the capacitor, and contacting one of the source and drain electrodes; an emission layer on the pixel electrode; and an opposite electrode on the emission layer.
Abstract:
An organic light-emitting diode display apparatus includes a substrate. An organic light-emitting device is disposed on the substrate and includes a first electrode, a second electrode, and an emission layer disposed between the first electrode and the second electrode. A reflectance of the first electrode is greater than a reflectance of the second electrode. A thin-film transistor is disposed between the substrate and the first electrode and is connected to the first electrode. A first light reflective layer is connected to the thin-film transistor that is disposed between the substrate and the first electrode. A photo sensor is disposed in an outer area of the substrate and is configured to sense light reflected from the first light reflective layer.
Abstract:
An organic light-emitting diode (OLED) display and a method of manufacturing an OLED display are disclosed. In one aspect, the display includes a substrate and a thin-film transistor including an active layer, a gate electrode, a source electrode, and a drain electrode formed over the substrate. A gate insulating layer is formed between the active layer and the gate electrode, and an interlayer insulating layer is formed between the gate electrode and the source and drain electrodes. Also, a planarization layer is formed over the source and drain electrodes, and a pixel electrode is formed over the planarization layer. The display also includes capacitor including a first electrode formed on the same layer as the active layer and a second electrode formed of the same material as the pixel electrode. A pixel-defining layer covers opposing ends of the pixel electrode; an emission layer formed over the pixel electrode.
Abstract:
An organic light-emitting display apparatus includes a buffer layer formed on a substrate; a gate insulating layer formed over the buffer layer; an interlayer insulating layer formed over the gate insulating layer; a first opening formed through the gate insulating layer and the interlayer insulating layer; a first organic insulating layer formed over the interlayer insulating layer and including a second opening that overlaps with the first opening; a pixel electrode formed in the second opening, and directly contacting the buffer layer; a light emission layer formed over the pixel electrode; and an opposite electrode formed over the light emission layer.