Abstract:
An apparatus and method for monitoring a stability of a spectrum are provided. The apparatus for monitoring stability of a spectrum includes a spectroscope configured to measure a spectrum of a sample and a processor configured to calculate a similarity change index of the measured spectrum and to determine the stability of the measured spectrum by analyzing the calculated similarity change index.
Abstract:
Provided is a spectrum measurement apparatus including a light source configured to emit light to a sample; a light detector configured to receive light, which is reflected or scattered from, or transmitted through the sample, and to measure an intensity of the received light, and a processor configured to reconstruct a spectrum of the sample for calibration while adjusting a value of a spectrum reconstruction parameter in response to the light detector receiving the light and measuring the intensity of the received light, and to determine an optimal value of the spectrum reconstruction parameter based on a similarity between the reconstructed spectrum of the sample for calibration and an original spectrum of the sample for calibration.
Abstract:
An apparatus for verifying repeatability of a spectroscope may verify repeatability of spectrum data, measured by a spectroscope, based on repeatability verification criteria, and control the spectroscope whether or not to remeasure spectrum data.
Abstract:
An apparatus for providing corrected bio-information by using a bio-information sensor includes a communicator configured to receive bio-information from the bio-information sensor; a processor configured to extract metabolic information based on food intake information of a user and correct the received bio-information based on the extracted metabolic information; and an outputter configured to provide a result of correcting the bio-information.
Abstract:
An apparatus for estimating a core body temperature of an object is provided. The apparatus may include a heat flow sensor configured to measure a first heat flux from an object, a first temperature sensor positioned under a thermal conducting material and configured to measure a surface temperature of the object, a second temperature sensor positioned above the thermal conducting material and configured to measure a surface temperature of the thermal conducting material, and a processor configured to obtain a second heat flux by calibrating the first heat flux based on the surface temperature of the object and the surface temperature of the thermal conducting material, and configured to estimate a core body temperature of the object based on the obtained second heat flux and the surface temperature of the object.
Abstract:
Provided is an apparatus for non-invasively monitoring a health condition. The apparatus for monitoring health according to an example embodiment of the disclosure includes: a pulse wave sensor configured to obtain a first pulse wave signal in a first contact state of an object and a second pulse wave signal in a second contact state of the object; and a processor configured to estimate a degree of vasodilation based on an alternating current (AC) component of each of the first pulse wave signal and the second pulse wave signal, configured to monitor a vascular health condition based on the estimated degree of vasodilation, and configured to output a result of monitoring the vascular health condition.
Abstract:
A healthcare apparatus according to an embodiment includes: a plurality of light sources configured to emit light of different wavelengths onto an object; a light detector configured to measure an optical signal of each of the wavelengths by receiving light reflected or scattered from the object; and a processor configured to obtain a blood glucose level and a blood flow index by using the optical signal of each of the wavelengths, and to estimate at least one from among dietary information and dietary metabolism state information by monitoring a blood glucose level change and a blood flow index change after ingestion of a food.