Abstract:
The present invention relates to a process for the oligomerization of ethylene, comprising: a) oligomerizing of ethylene in a reactor in the presence of solvent and catalyst; b) transferring reactor overhead effluent to an externally located cooling device and recycling condensed effluent into the reactor; c) transferring the reactor bottom effluent to a series of fractionation columns and, in the following order, i) optionally separating C4 fraction, ii) separating C6 fraction, iii) simultaneously separating C8 and C10 fractions and recycling thereof into the reac-tor, and iv) separating residues comprising ≧C12 fractions, spent catalyst, polymer material and quench media, from the process, wherein the solvent is separated in any of the steps i)-iv) and/or in an additional step.
Abstract:
A method for purifying a crude PNPNH compound of the general structure R1R2P—N(R3)—P(R4)—N(R5)—H wherein R1, R2, R3, R4 and R5 are independently halogen, amino, trimethylsilyl, C1-C10-alkyl, substituted C1-C10-alkyl, C6-C20-aryl and substituted C6-C20-aryl, or any cyclic derivative wherein at least one of the P or N atoms of the PNPN—H structure is a member of a ring system, the ring system being formed from one or more constituent compounds of the PNPNH-structure by substitution, the method comprising the steps: A. a) dissolving the crude PNPNH-compound in a C1-C10 alcohol or mixture thereof under heating; b) cooling the solution obtained in step a), c) precipitating the PNPNH compound, separating and optionally drying, or B. (i) washing the crude PNPNH compound with C1-C10 alcohol or a mixture thereof, (ii) separating the PNPNH compound and optionally drying thereof.
Abstract:
The present invention relates to a process for the oligomerization of ethylene, comprising: a) oligomerization of ethylene in a reactor in the presence of solvent and catalyst; b) transferring reactor overhead effluent to an externally located cooling device and recycling condensed effluent into the reactor; c) transferring the reactor bottom effluent to a series of fractionation columns and, in the following order, i) optionally separating a C4 fraction, ii) separating a C6 fraction, iii) simultaneously separating C8 and C10 fractions and recycling thereof into the reactor , and iv) separating residues comprising ≥C12 fractions, spent catalyst polymer material and quench media, from the process, wherein the solvent is separated in any of the steps i)-iv)and/or in an additional step.
Abstract:
A method for purifying a crude PNPNH compound of the general structure R1R2P—N(R3)—P(R4)—N(R5)—H wherein R1, R2, R3, R4 and R5 are independently halogen, amino, trimethylsilyl, C1-C10-alkyl, substituted C1-C10-alkyl, C6-C20-aryl and substituted C6-C20-aryl, or any cyclic derivative wherein at least one of the P or N atoms of the PNPN—H structure is a member of a ring system, the ring system being formed from one or more constituent compounds of the PNPNH-structure by substitution, the method comprising the steps: A. a) dissolving the crude PNPNH-compound in a C1-C10 alcohol or mixture thereof under heating; b) cooling the solution obtained in step a), c) precipitating the PNPNH compound, separating and optionally drying, or B. (i) washing the crude PNPNH compound with C1-C10 alcohol or a mixture thereof, (ii) separating the PNPNH compound and optionally drying thereof.
Abstract:
A method for removal and recovery of an organic amine from a hydrocarbon stream containing the amine, including: i) mixing the hydrocarbon stream containing the amine with an aqueous inorganic acid in a volumetric ratio of hydrocarbon stream:aqueous inorganic acid of greater than 1:1-5:1, preferably 1.5:1-4:1, more preferably 3:1, ii) phase separating of hydrocarbon and aqueous phase; iii) removing the hydrocarbon phase and optionally further purifying thereof, iv) optionally recycling at least a part of the hydrocarbon phase obtained in step (iii) into mixing step (i), v) mixing the aqueous phase obtained in step (iii) with an aqueous alkaline solution, vi) phase separating of an aqueous phase and an organic phase formed, vii) removing the organic phase obtained in step (vi) and optionally further purifying thereof.