Abstract:
A method of increasing the viscosity of a gelled organic-based fluid is disclosed. The method includes forming the gelled organic-based fluid by combining an organic solvent, an alkaline agent in the form of particles present in the gelled organic-based fluid in an amount from about 0.001 to about 0.02 pounds per gallon of the gelled organic-based fluid, a gelling agent, and a metal crosslinker. The gelled organic-based fluid having a viscosity which is greater than a viscosity of an equivalent gelled organic-based fluid not including the alkaline agent.
Abstract:
A composition or compositions useful as a well treatment fluid is disclosed containing high molecular weight guar and low molecular weight water soluble polymer having a lower molecular weight than the high molecular weight guar. The composition can also contain water and a crosslinking agent, and the low molecular weight water soluble polymer can include a low molecular weight guar. A method of treating a subterranean formation is also disclosed including placing the composition(s) in the subterranean formation.
Abstract:
Methods of treating a subterranean formation penetrated by a wellbore include providing environmental water, admixing a viscosifying amount of a polymer and at least one divalent cation with the environmental water to form an admixture, and pumping the admixture through the wellbore at a rate and pressure sufficient to treat the subterranean formation. The viscosity of the admixture increases after the at least one divalent cation, the viscosifying amount of polymer and the environmental water are admixed. Such viscosity increase may be at least about 5% over at least a 10 minute period after the admixture is prepared. The divalent cation(s) may be selected from the group consisting of barium, calcium, copper(II), iron(II), magnesium, manganese(II), strontium, tin(II), zinc, and mixtures thereof. Further, the divalent cation(s) may be provided in the form of a salt with one or more anions selected from acetate, bicarbonate, nitrate, chloride, bromide, iodide, sulfate ion, and mixtures thereof.
Abstract:
Methods of treating a subterranean formation penetrated by a wellbore include providing environmental water, admixing a viscosifying amount of a polymer and at least one divalent cation with the environmental water to form an admixture, and pumping the admixture through the wellbore at a rate and pressure sufficient to treat the subterranean formation. The viscosity of the admixture increases after the at least one divalent cation, the viscosifying amount of polymer and the environmental water are admixed. Such viscosity increase may be at least about 5% over at least a 10 minute period after the admixture is prepared. The divalent cation(s) may be selected from the group consisting of barium, calcium, copper(II), iron(II), magnesium, manganese(II), strontium, tin(II), zinc, and mixtures thereof. Further, the divalent cation(s) may be provided in the form of a salt with one or more anions selected from acetate, bicarbonate, nitrate, chloride, bromide, iodide, sulfate ion, and mixtures thereof.
Abstract:
Embodiments herein relate to a method of forming a fluid including controlling the pH of the water, wherein the pH after controlling is 4.0 to 7.5, introducing a polymer comprising guar to the water to form a fluid, introducing a crosslinker comprising zirconium a group 4 metal to the fluid, and observing the viscosity of the fluid, wherein the viscosity is at least 80 cP at 100 s-1 in the first half-hour after introducing the crosslinker. In some embodiments, the water is collected from an oil field services water treatment facility, pond, or truck. Embodiments herein relate to a method of forming a fluid including analyzing water for pH wherein the water comprises a salinity of 300 ppm or greater, controlling the pH of the water, wherein the pH after controlling is 4.5 to 8.0, introducing a polymer to the water to form a fluid, introducing a crosslinker to the fluid, and observing the viscosity, wherein the viscosity is at least 80 cP at 100 s-1 in the first half-hour after introducing the crosslinker is at least 80 cP at 100 s-1 in the first half-hour after introducing the crosslinker.