Abstract:
A petrophysically regularized time domain nuclear magnetic resonance (NMR) inversion includes using an NMR tool to acquire NMR data and inverting the acquired NMR data in a time domain using petrophysical constraints. The inverted NMR data is analyzed. The petrophysical constraints may be identified by: determining a number of porobodons to seek, defining a plurality of zones in which only a subset of porobodon sets is present, and stacking all NMR echoes in each zone satisfying discriminators. The number of porobodons to seek may be based on knowledge of core samples, logs, and NMR sensitivity. The discriminator logs may be logs sensitive to porosity partitioning. A computing system having a processor, a memory, and a program stored in memory may be configured to perform the method. The system may be conveyed downhole on a wireline, a while-drilling drill string, a coiled tubing, a slickline, or a wired drill pipe.
Abstract:
Asphaltene content and its spatial distribution in a reservoir containing crude oil is an important factor in determining the potential for formation damage and pipeline impairment, as well as planning for processing and refining of the oil. Exemplary uses include: reservoir modeling, development and depletion planning, pressure maintenance, and surface facilities management. A convenient method has been developed which uses two-dimensional NMR techniques during a temperature and/or pressure cycle to quantify the asphaltene content of the crude oil without the need for extracting the oil from the reservoir rock. The technique can be applied to core, down-hole logs, or, a combination of both.
Abstract:
A petrophysically regularized time domain nuclear magnetic resonance (NMR) inversion includes using an NMR tool to acquire NMR data and inverting the acquired NMR data in a time domain using petrophysical constraints. The inverted NMR data is analyzed. The petrophysical constraints may be identified by: determining a number of porobodons to seek, defining a plurality of zones in which only a subset of porobodon sets is present, and stacking all NMR echoes in each zone satisfying discriminators. The number of porobodons to seek may be based on knowledge of core samples, logs, and NMR sensitivity. The discriminator logs may be logs sensitive to porosity partitioning. A computing system having a processor, a memory, and a program stored in memory may be configured to perform the method. The system may be conveyed downhole on a wireline, a while-drilling drill string, a coiled tubing, a slickline, or a wired drill pipe.