Abstract:
A methodology provides improved rock classification. The rock classification may be based on characteristics such as texture and composition. Initially, data is obtained on rock in a given subterranean region. The data is processed to derive a material behavior and/or material properties in the subterranean region based on texture and/or composition of the rock.
Abstract:
A workflow is provided that characterizes the hydraulic fracturability of a rock based on properties obtained from CT scanning and from non-CT based data. The characterization is based on obtaining a plurality of properties of a core sample as a function of axial location in the core sample. The workflow includes obtaining CT data from at least one CT scan of the core, obtaining heterogeneity data of the core, generating a heterogeneous rock analysis (HRA) model based at least on the obtained CT data and heterogeneity data; quantifying statistically significant distinct rock classes in the core, and assigning hydraulic fracturability index (HFI) values to each distinct rock class, as well as any HFI variation within each rock class. An HFI value is assigned to each rock class, and within a rock class, in the core and those values can be propagated to other locations in the same or surrounding wells.
Abstract:
A method for characterizing properties of a porous sample that employs a test apparatus including a sample cell and associated pressure sensor having a configuration that measures pressure of the isolated sample cell. The porous sample is divided into a number of pieces, which are loaded into the sample cell. The test apparatus is configured to perform a sequence of test operations whereby the loaded isolated sample cell is filled with test fluid under pressure and the pressure sensor is used to generate and store pressure data over time. A data processing system processes the pressure data in conjunction with a computational model that includes a set of pressure curves with a number of curve-related variables and associated values in order to identify a matching pressure curve, and processes the variable values for the matching pressure curve in order to derive bulk properties of the porous sample.
Abstract:
A method for characterizing properties of a manufactured rock sample that employs first and second test apparatus. The first test apparatus includes a sample holder and associated pressure sensors, wherein the sample holder allows for a pulse of test fluid to flow through the sample, and the pressure sensors measure pressure upstream and downstream of the sample as the pulse of test fluid flows through the sample. The second test apparatus includes a sample cell and associated pressure sensor, wherein the sample cell has a configuration where the sample cell is isolated and filled with test fluid under pressure and the pressure sensor measures pressure of the isolated sample cell. The first and second test apparatus are used to measure bulk properties of the sample. The sample is partitioned into pieces, and the second test apparatus is used to measure properties for different size-groups of such sample pieces.
Abstract:
A method for characterizing properties of a sample that employs a test apparatus including an isolated sample cell and pressure sensor where the isolated sample cell is loaded with the sample and gaseous test fluid to perform a number of different tests to derive properties of the sample. The tests can be performed over different parameters, such as different applied pressures of the test fluid to derive parameters related to apparent gas permeability of the sample as a function of applied pressure, different gaseous test fluids to characterize dependence of permeability of the sample on mean free molecular path or pressure, with both adsorptive and non-adsorptive test gases to characterize at least one property related to adsorptive interaction between the adsorptive test gas and the sample, and with samples of varying saturation levels to derive a measure of at least one property of the subsamples at corresponding saturation levels.
Abstract:
A method for characterizing properties of a sample that employs a test apparatus including an isolated sample cell and pressure sensor where the isolated sample cell is loaded with the sample and gaseous test fluid to perform a number of different tests to derive properties of the sample. The tests can be performed over different parameters, such as different applied pressures of the test fluid to derive parameters related to apparent gas permeability of the sample as a function of applied pressure, different gaseous test fluids to characterize dependence of permeability of the sample on mean free molecular path or pressure, with both adsorptive and non-adsorptive test gases to characterize at least one property related to adsorptive interaction between the adsorptive test gas and the sample, and with samples of varying saturation levels to derive a measure of at least one property of the subsamples at corresponding saturation levels.
Abstract:
A test apparatus (and method of operation) for characterizing properties of a sample under test (such as porous material, for example, samples of reservoir rock) that operates in conjunction with a source of test fluid. The test apparatus includes an intake valve fluidly coupled to the source of test fluid, a reference cell fluidly coupled to the source of test fluid via the intake valve, a sample cell that holds the sample under test, an isolation valve fluidly coupled between the reference cell and the sample cell, an exhaust port, an exhaust valve fluidly coupled between the sample cell and the exhaust port, a first pressure sensor associated with the reference cell for measuring pressure within the reference cell, and a second pressure sensor associated with the sample cell for measuring pressure within the sample cell. The method of operation includes calibration procedures to compensate for systematic measurement errors.
Abstract:
A method for characterizing properties of a manufactured rock sample that employs first and second test apparatus. The first test apparatus includes a sample holder and associated pressure sensors, wherein the sample holder allows for a pulse of test fluid to flow through the sample, and the pressure sensors measure pressure upstream and downstream of the sample as the pulse of test fluid flows through the sample. The second test apparatus includes a sample cell and associated pressure sensor, wherein the sample cell has a configuration where the sample cell is isolated and filled with test fluid under pressure and the pressure sensor measures pressure of the isolated sample cell. The first and second test apparatus are used to measure bulk properties of the sample. The sample is partitioned into pieces, and the second test apparatus is used to measure properties for different size-groups of such sample pieces.