Abstract:
An LAS-glass for producing a transparent glass-ceramic and an LAS-glass-ceramic having a predetermined chroma C* and a predetermined visually determinable scatter value (S) are provided. The LAS-glass and LAS-glass-ceramic has a process window as large as possible during the nucleus formation process with respect to the residence time in the relevant temperature range for the formation of nuclei.
Abstract:
A transparent low-colour lithium aluminium silicate (LAS) glass ceramic and the use thereof are provided. The ceramic has an environmentally friendly composition with high-quartz mixed crystals as the main crystal phase. The glass ceramic contains the following components (in wt % on the basis of oxide): TiO2 1.6- CaO+SrO +BaO. In some embodiments, the glass ceramic has a hue c* of less than 5.5, a light transmission Y greater than 81% and has no visually disruptive diffusion.
Abstract translation:提供透明的低色度硅酸锂(LAS)玻璃陶瓷及其用途。 该陶瓷具有以高石英混晶为主要结晶相的环保组合物。 玻璃陶瓷含有以下组分(以氧化物为基准的重量%):TiO 2 1.6- <2.5; Nd2O3 0.005-0.15; MgO 0.2-1.0; ZnO 1-2.5; CaO + SrO 0-1.5; BaO 0-1.5,条件B1:MgO + ZnO> CaO + SrO + BaO。 在一些实施例中,玻璃陶瓷具有小于5.5的色调c *,大于81%的透光率Y,并且没有视觉上的破坏性扩散。
Abstract:
Sheet-like glass ceramic article are provided that include surfaces with a thickness between the surfaces between 0.5 mm and 1.9 mm and a core. The articles have a first microstructure provided on each of the surfaces and have a second microstructure in the core with a second thickness (d2). The first microstructures extend inwardly from the surfaces towards the core and has a first thickness (d1). The first microstructure has a difference from the second microstructure selected from a group consisting of: a crystalline phase type, a crystalline phase amount, crystalline phase size distribution, crystalline phase orientation, crystalline phases composition, crystalline inclusion, an amorphous phase type, an amorphous phase percentage amount, an amorphous phase composition, and any combinations thereof. The difference results in a first coefficient of linear thermal expansion of the first microstructure that is smaller than a second coefficient of linear thermal expansion of the second microstructure.
Abstract:
A glass ceramic article is provided so that a reliable coloring with a defined transmittance is ensured. The reliable coloring of the glass ceramic article is based on a high content of iron oxide of more than 0.1 percent by weight which itself has a strongly coloring effect does not further reduce transmittance but rather interacts with vanadium oxide to attenuate the absorption caused by vanadium oxide.
Abstract:
A glass ceramic article is provided so that a reliable coloring with a defined transmittance is ensured. The reliable coloring of the glass ceramic article is based on a high content of iron oxide of more than 0.1 percent by weight which itself has a strongly coloring effect does not further reduce transmittance but rather interacts with vanadium oxide to attenuate the absorption caused by vanadium oxide.
Abstract:
A glass ceramic substrate made of a transparent, colored LAS glass ceramic is provided. The glass ceramic has a gradient layer with keatite solid solution and an underlying core with high-quartz solid solution as predominant crystal phase. The keatite solid solution in a depth of 10 μm or greater exceeds 50% of the sum of the high-quartz solid solution proportion and keatite solid solution proportion. The ceramization includes a crystal transformation step, in which the high-quartz solid solution is transformed at a maximum temperature in the range of 910° to 980° and a time period of between 1 and 25 minutes in part into the keatite solid solution.
Abstract:
A lithium-containing, transparent glass-ceramic material is provided. The material has low thermal expansion and has an amorphous, lithium-depleted, vitreous surface zone. The zone is at least 50 nm thick on all sides and encloses a crystalline interior, which has high transmission. The material includes a transition region connecting the zone and the interior.
Abstract:
A method of manufacturing glass ceramic articles such as glass ceramic plates for cooktops or fireplace windows is provided. The method facilitates the adjustment of a specific hue or a specific absorptivity of the glass ceramic in the visible spectral range. The method is based on the finding that the absorption of light by coloring agents which are appropriate for or present in glass ceramics can be attenuated during the ceramization process by adding substances that have a decoloring effect.
Abstract:
A method of manufacturing glass ceramic articles such as glass ceramic plates for cooktops or fireplace windows is provided. The method facilitates the adjustment of a specific hue or a specific absorptivity of the glass ceramic in the visible spectral range. The method is based on the finding that the absorption of light by coloring agents which are appropriate for or present in glass ceramics can be attenuated during the ceramization process by adding substances that have a decoloring effect.