Abstract:
A transparent colored glass ceramic, in particular an LAS glass ceramic, suitable for use as a cooking surface is provided. The transparent colored glass ceramic includes high-quartz solid solution (HQ s.s.) as a main crystal phase and exhibits thermal expansion of −1 to +1 ppm/Kin the range from 20° C. to 700° C. The glass ceramic has from 3.0 to 3.6 percent by weight of lithium oxide (Li2O) as constituents and either is colored with 0.003 to 0.05 percent by weight of vanadium oxide (V2O5) or is colored with 0.003 to 0.25 percent by weight of molybdenum oxide (MoO3).
Abstract:
A cooktop is provided that has a glass ceramic cooking plate, at least one heater arranged below the glass ceramic cooking plate, and at least one touch sensor. The touch sensor is operable across the glass ceramic cooking plate for adjusting the power of the at least one heater. The glass ceramic cooking plate has an increased strength and is therefore produced with a reduced thickness, whereby the sensitivity and reliability of the touch sensor is significantly improved.
Abstract:
A glass ceramic substrate made of a transparent, colored LAS glass ceramic is provided. The glass ceramic has a gradient layer with keatite solid solution and an underlying core with high-quartz solid solution as predominant crystal phase. The keatite solid solution in a depth of 10 μm or greater exceeds 50% of the sum of the high-quartz solid solution proportion and keatite solid solution proportion. The ceramization includes a crystal transformation step, in which the high-quartz solid solution is transformed at a maximum temperature in the range of 910° to 980° and a time period of between 1 and 25 minutes in part into the keatite solid solution.
Abstract:
In order to obtain glass or glass ceramic materials having increased strength, a method is provided for producing glass or glass ceramic articles, which comprises: producing an initial glass body, mounting the initial glass body on a gas cushion between a levitation support and the initial glass body, and at least partially ceramizing the initial glass body on the levitation support. The levitation support comprises at least one continuous surface region having at least one gas feed region where levitation gas for the gas cushion is fed out from the levitation support, and at least one gas discharge region where gas from the gas cushion is at least partially discharged into the levitation support.
Abstract:
Sheet-like glass ceramic article are provided that include surfaces with a thickness between the surfaces between 0.5 mm and 1.9 mm and a core. The articles have a first microstructure provided on each of the surfaces and have a second microstructure in the core with a second thickness (d2). The first microstructures extend inwardly from the surfaces towards the core and has a first thickness (d1). The first microstructure has a difference from the second microstructure selected from a group consisting of: a crystalline phase type, a crystalline phase amount, crystalline phase size distribution, crystalline phase orientation, crystalline phases composition, crystalline inclusion, an amorphous phase type, an amorphous phase percentage amount, an amorphous phase composition, and any combinations thereof. The difference results in a first coefficient of linear thermal expansion of the first microstructure that is smaller than a second coefficient of linear thermal expansion of the second microstructure.
Abstract:
A transparent colored glass ceramic, in particular an LAS glass ceramic, suitable for use as a cooking surface is provided. The transparent colored glass ceramic includes high-quartz solid solution (HQ s.s.) as a main crystal phase and exhibits thermal expansion of −1 to +1 ppm/K in the range from 20° C. to 700° C. The glass ceramic has from 3.0 to 3.6 percent by weight of lithium oxide (Li2O) as constituents and either is colored with 0.003 to 0.05 percent by weight of vanadium oxide (V2O5) or is colored with 0.003 to 0.25 percent by weight of molybdenum oxide (MoO3).
Abstract:
A cooktop is provided that includes a glass ceramic cooking plate that exhibits enhanced mechanical strength and at the same time increased spectral transmittance in the infrared range. The glass ceramic cooking plate makes it possible to detect, through the glass ceramic cooking plate, the temperature of a piece of cookware placed thereon using an infrared sensor, and to perform an automated cooking process in response thereto.
Abstract:
A transparent colored glass ceramic, in particular an LAS glass ceramic, suitable for use as a cooking surface is provided. The transparent colored glass ceramic includes high-quartz solid solution (HQ s.s.) as a main crystal phase and exhibits thermal expansion of −1 to +1 ppm/Kin the range from 20° C. to 700° C. The glass ceramic has from 3.0 to 3.6 percent by weight of lithium oxide (Li2O) as constituents and either is colored with 0.003 to 0.05 percent by weight of vanadium oxide (V2O5) or is colored with 0.003 to 0.25 percent by weight of molybdenum oxide (MoO3).
Abstract:
A transparent colored glass ceramic, in particular an LAS glass ceramic, suitable for use as a cooking surface is provided. The transparent colored glass ceramic includes high-quartz solid solution (HQ s.s.) as a main crystal phase and exhibits thermal expansion of −1 to +1 ppm/K in the range from 20° C. to 700° C. The glass ceramic has from 3.0 to 3.6 percent by weight of lithium oxide (Li2O) as constituents and either is colored with 0.003 to 0.05 percent by weight of vanadium oxide (V2O5) or is colored with 0.003 to 0.25 percent by weight of molybdenum oxide (MoO3).
Abstract:
A glass ceramic substrate made of a transparent, colored LAS glass ceramic is provided. The glass ceramic has a gradient layer with keatite solid solution and an underlying core with high-quartz solid solution as predominant crystal phase. The keatite solid solution in a depth of 10 μm or greater exceeds 50% of the sum of the high-quartz solid solution proportion and keatite solid solution proportion. The ceramization includes a crystal transformation step, in which the high-quartz solid solution is transformed at a maximum temperature in the range of 910° to 980° and a time period of between 1 and 25 minutes in part into the keatite solid solution.