Abstract:
A liquid ejecting apparatus includes a liquid ejecting unit, a carriage, an optical machine, a liquid receiving unit, and a suction mechanism. The liquid ejecting unit is designed to form an image by ejecting a droplet from a nozzle formed in a nozzle forming surface to a medium. The carriage holds the liquid ejecting unit. The optical machine is held by the carriage. The liquid receiving unit is designed to receive a liquid discharged from the liquid ejecting unit in a discharge operation for maintenance of the liquid ejecting unit. The suction mechanism has a surface provided with a suction opening that allows ambient air on a liquid ejecting unit side to be sucked therefrom during the discharge operation.
Abstract:
An inertial sensor device includes a first interface, a second sensor, a second interface, a host interface, and a processing circuit. The first interface is an interface for a first sensor configured to detect a first physical quantity in a first detection axis, a second physical quantity in a second detection axis, and a third physical quantity in a third detection axis. The second sensor is configured to detect the physical quantity in the third detection axis as a high-accuracy third physical quantity with a higher accuracy than the first sensor. The processing circuit is configured to output the first physical quantity and the second physical quantity to a host via the host interface, and output the high-accuracy third physical quantity instead of the third physical quantity to the host via the host interface.
Abstract:
A liquid ejecting apparatus includes a liquid ejecting unit, a carriage, an optical machine, a liquid receiving unit, and a suction mechanism. The liquid ejecting unit is designed to form an image by ejecting a droplet from a nozzle formed in a nozzle forming surface to a medium. The carriage holds the liquid ejecting unit. The optical machine is held by the carriage. The liquid receiving unit is designed to receive a liquid discharged from the liquid ejecting unit in a discharge operation for maintenance of the liquid ejecting unit. The suction mechanism has a surface provided with a suction opening that allows ambient air on a liquid ejecting unit side to be sucked therefrom during the discharge operation.
Abstract:
A liquid ejecting apparatus including: a liquid ejecting portion configured to eject a liquid from a nozzle disposed in a nozzle surface; a wiping mechanism configured to perform a wiping operation of wiping the nozzle surface by moving a strip-shaped member configured to absorb the liquid relative to the nozzle surface in a state in which the strip-shaped member is in contact with the nozzle surface; and a control portion configured to perform a pre-wiping operation of moving the strip-shaped member relative to the nozzle surface at a speed higher than a speed for the relative movement during the wiping operation in a state in which the strip-shaped member is not in contact with the nozzle surface and is configured to be brought into contact with the liquid adhering to the nozzle surface, prior to the wiping operation of wiping the nozzle surface with the strip-shaped member.
Abstract:
A liquid ejecting apparatus sequentially performs a discharging operation of discharging pressurized liquid from a nozzle, a discharge stopping operation of stopping the discharging operation, a pressure reducing operation of reducing the pressure in a liquid ejecting unit, and a wiping operation of wiping a nozzle surface.
Abstract:
A liquid supplying device includes a first intermediate storage and a second intermediate storage that store liquid and are provided such that the liquid can be supplied from a liquid ejecting unit which ejects the liquid, a liquid supply source holding unit that holds a liquid supply source which accommodates the liquid and that can supply the liquid accommodated in the liquid supply source to the first intermediate storage and the second intermediate storage, and a pressure regulating mechanism that can regulate pressures inside the first intermediate storage and inside the second intermediate storage. In the liquid supplying device, the inside of one intermediate storage, out of the first intermediate storage and the second intermediate storage, is depressurized, and the liquid is supplied from the liquid supply source to the one intermediate storage.
Abstract:
A liquid ejecting apparatus includes a liquid ejecting portion configured to eject a liquid supplied through a common flow path, from a plurality of nozzles that are arranged on a nozzle surface and form a nozzle row, a wiping mechanism that includes a wiping member having absorptivity for absorbing the liquid and is configured to wipe the nozzle surface, and a control portion that drives the wiping mechanism during a wiping operation of wiping the nozzle surface by the wiping member or before the wiping operation after a discharge operation of discharging the liquid from the nozzle, and performs a stop operation of stopping the wiping member for a predetermined time at a position at which the wiping member comes into contact with the liquid that swells to cover the nozzle or with the nozzle.
Abstract:
A fluid ejecting apparatus includes a nozzle that ejects fluid; a transporting section that transports in a direction of transportation a medium on which the fluid lands; and a mist sucking section that sucks air including a mist portion when the nozzle ejects the fluid, so as to move the mist portion from a route that extends from the nozzle to the spot on the medium where the fluid lands. The mist portion is a portion of mist, which is part of the fluid ejected by the nozzle that does not land on the medium and is floating.