SECONDARY BATTERY, PORTABLE INFORMATION TERMINAL, VEHICLE, AND MANUFACTURING METHOD OF POSITIVE ELECTRODE ACTIVE MATERIAL

    公开(公告)号:US20230055667A1

    公开(公告)日:2023-02-23

    申请号:US17793194

    申请日:2021-01-21

    Abstract: A positive electrode active material with little deterioration is provided. Positive electrode active material particles with little deterioration are provided. A power storage device with little deterioration is provided. A highly safe power storage device is provided. A novel power storage device is provided. A secondary battery includes a positive electrode and a negative electrode. In the secondary battery, the positive electrode includes a positive electrode active material; the positive electrode active material includes a crystal exhibiting a layered rock-salt crystal structure; the crystal is represented by the space group R-3m; the positive electrode active material is a particle containing lithium, cobalt, titanium, magnesium, and oxygen; the concentration of the magnesium in a surface portion of the particle is higher than the concentration of the magnesium in an inner portion of the particle; and in the positive electrode active material, the concentration of the titanium in the surface portion of the particle is higher than the concentration of the titanium in the inner portion of the particle.

    SECONDARY BATTERY, METHOD FOR MANUFACTURING POSITIVE ELECTRODE ACTIVE MATERIAL, PORTABLE INFORMATION TERMINAL, AND VEHICLE

    公开(公告)号:US20230052499A1

    公开(公告)日:2023-02-16

    申请号:US17778538

    申请日:2020-11-16

    Abstract: Secondary batteries using lithium cobalt oxide as positive electrode active materials have a problem of a decrease in battery capacity due to repeated charging/discharging, for example. A positive electrode active material particle which hardly deteriorates is provided. In a first step, a container in which a lithium oxide and a fluoride are set is placed in a heating furnace, and in a second step, the inside of the heating furnace is heated in an atmosphere containing oxygen. The heating temperature of the second step is from 750° C. to 950° C., inclusive. By the manufacturing method, fluorine can be contained in the positive electrode active material particle to increase the wettability of the surface of the positive electrode active material so that the surface of the positive electrode active material is homogenized and planarized. The crystal structure of the thus manufactured positive electrode active material is unlikely to be broken in repeated high-voltage charging/discharging. Thus, secondary batteries using the positive electrode active material having such a feature have greatly improved cycle characteristics.

Patent Agency Ranking