摘要:
Provided is an EL element utilizing upconversion light emission involving highly efficient triplet-triplet annihilation. A blue-light-emitting layer includes an ionic liquid, a red phosphorescent material, and a blue fluorescent material. The blue fluorescent material and the red phosphorescent material are homogeneously dispersed in a liquid film of the ionic liquid.
摘要:
To provide a vapor deposition source of which material usage efficiency is higher as compared with the related art. A vapor deposition source (10) includes a vapor deposition particles ejecting unit (30) configured to include multistage of nozzle units layered apart from each other in a vertical direction, each of the nozzle units including at least one vapor deposition nozzle (32, 52), and at least one space part (43) provided between the multistage of vapor deposition nozzles, and a vacuum exhaust unit (14) connected with the at least one space part (43).
摘要:
A vapor deposition particles ejecting unit (30) in a vapor deposition source (10) includes: a plurality of stages of nozzle units each including at least one vapor deposition nozzle (32, 52) and stacked while separated from each other in a vertical direction; and at least one hollow portion (43) formed between the at least one vapor deposition nozzle and the at least one vapor deposition nozzle of respective stages. The at least one hollow portion is surrounded on four sides by a side wall (44) including at least one opening (45) formed in the side wall and connecting the at least one hollow portion and a vacuum chamber space (2a).
摘要:
A method of producing a vapor deposition mask includes the steps of (i) preparing a mixture which contains a resin material and an inorganic filler and (ii) shaping, with use of a reactor which serves as a shaping die, the mixture so that the mask substrate is shaped, the mask substrate containing a resin made of the resin material and the inorganic filler mixed in the resin.
摘要:
An organic electroluminescent element includes, in the following order: an anode; a hole transport layer; a first mixed light-emitting layer; a luminescent dopant layer; a second mixed light-emitting layer; an electron transport layer; and a cathode, the first mixed light-emitting layer containing a first luminescent host material and a first luminescent dopant material, the second mixed light-emitting layer containing a second luminescent host material and a second luminescent dopant material, the luminescent dopant layer consisting essentially only of a third luminescent dopant material and being thinner than the first mixed light-emitting layer and the second mixed light-emitting layer.
摘要:
An organic EL display device with higher resolution, suppressed power consumption while being driven and low manufacturing cost, and no color mixing and color shifting between subpixels adjacent to each other is provided. In a B subpixel, a first separation layer is provided between a common blue-light-emitting layer and a common green-light-emitting layer. In a G subpixel, a second separation layer is provided between the common green-light-emitting layer and a common red-light-emitting layer.
摘要:
A hole injection layer provided between a first electrode and each of light emitting layers, and an electron injection layer provided between a second electrode and each of light emitting layers, overlap only inward from an end portions each of the light emitting layers when viewed in plan view.
摘要:
To provide an organic EL element having good injection properties and transport properties of a carrier. Included are: an InGaZnO layer with a composition rich in In2O3 as a transparent electrode contacting a negative electrode; an InGaZnO layer with a stoichiometric ratio of In:Ga:Zn:O=1:1:1:4 as an electron injecting layer; and an InGaZnO layer with a composition rich in Ga2O3 as an electron transport layer contacting a light emitting layer.
摘要:
An organic EL element (10) includes a first light-emitting layer (33a) having the shortest emission peak wavelength of a light-emitting layer (33) and containing a host material and a TTF material or at least the TTF material, a second light-emitting layer (33b) containing at least a TADF material, a third light-emitting layer (33c) having the longest emission peak wavelength of the light-emitting layer (33) and containing at least fluorescent material. The excited triplet level of the TTF material is lower than the excited triplet level of the TADF material.
摘要:
Provided is a line source that can achieve uniform film thickness distribution and also achieve high use efficiency of vapor deposition materials. A line source (10) has slit nozzles (1) having a slit nozzle's length-to-width ratio of 4 to 50, a width of 1 mm to 5 mm, and a depth of 5 mm to 20 mm.