Abstract:
A data processing method acquires an output value of a magnetic field from each of one or more magnetic sensors and identifies, for each of the one or more magnetic sensors, the magnetic field resulting from the position at which the output value was derived. The data processing method generates a detection value for each of the one or more magnetic sensors by removing the magnetic field resulting from the position from the output value.
Abstract:
Provided is a radiation detector 1 which is high in radiation detection sensitivity and is capable of preventing a loss of fluorescence by integrating scintillator crystals C and reflection plates rx and ry without using a permeable material. According to the present invention, the adhesive sheets Sa and Sb are adhered to the ends of scintillator crystals C arranged in a matrix in the height direction. The scintillator crystals C are integrated by the adhesive sheets Sa and Sb. According to the present invention, there is no need to form a scintillator 2 by securing the scintillator crystals C and the reflection plates ry by an adhesive. Therefore, an adhesive before curing does not enter gaps between the scintillator crystal C and the reflection plate ry, and therefore the gap forms an air layer. With such a configuration, a phenomenon that the fluorescence generated inside the scintillator crystal C is emitted out of the scintillator crystal C becomes less likely occur, which in turn can minimize a decrease in the intensity of fluorescence.
Abstract:
A radiation tomograph whereby the acquisition of transmission data and the measurement of annihilation radiation pairs are simultaneously performed by a single detector ring so as to realize both reduction of the manufacturing cost of a PET device and reduction of a burden to a subject. The transmission data, which shows the distribution of annihilation radiation absorption characteristics within a subject, is computed from data relating to annihilation radiation pairs in the vicinity of a surface of the subject. The transmission data can be acquired by detecting a radioactive drug derived from the subject, which makes imaging exclusively for transmission data unnecessary.
Abstract:
A radiation detection device includes a scintillator group which includes a plurality of scintillators; an optical detection unit which is provided in each scintillator and detects scintillation light; and a control unit which corrects a detection signal based on a value of energy of a radiation and a plurality of features included in a histogram based on the acquired detection signal.
Abstract:
Provided is a radiation detector that is capable of accurately calculating the time of occurrence of fluorescence. In addition to a configuration that calculates a single signal time, the present invention, in view of the case in which a multiple event occurs, also has a configuration that on the basis of an added signal generated by adding detection signals together, calculates the time of occurrence of fluorescence (added signal time). The radiation detector according to the present invention is configured to output the added signal time as the time of occurrence of fluorescence when the number of detection elements 3a in the fluorescence detection is plural (at the time of a multiple event). In the case of a multiple event, from the viewpoint of strengthening of a signal addition, an added signal time is more accurate than a single signal time.
Abstract:
In this radiation detector, a scintillator block (3) and a light guide (5) are optically coupled such that surfaces of side peripheral portions (25) face surfaces of scintillator crystals, among scintillator crystals configuring the scintillator block (3), which are positioned at side edge portions. Accordingly, scintillator light generated at the side edge portions of the scintillator block (3) becomes incident on the side peripheral portions (25) more reliably. As a result, a radiation detector (1) according to the present invention is capable of achieving high resolution in DOI detection. Furthermore, resin curing is used to integrally form the side peripheral portions (25) comprising a plurality of blocks, and thus a complex assembly step during production of the light guide (5) does not need to be performed. Accordingly, production of the light guide (5) is facilitated, and thus low production costs of the radiation detector according to the present invention can be achieved.
Abstract:
A display device, a display method, and a display program used in a measurement system capable of facilitating positioning in a measurement information image by displaying an IP (imaging plate) image having measurement information for β+ rays contained in blood to be measured and appending a guide G based on design information of a disc housing the blood to an IP image and displaying the image. The guide G is appended to an IP image in which a guide is not originally reflected, which makes it possible to visually discern a reference position (for example, the central position of the disc) in the IP image based on design information. As a result, it is possible to facilitate positioning in the IP image based on the guide G indicating the reference position (central position of the disc).
Abstract:
A radiation detector (5) is configured such that weighting of detection signals of photodetectors (52) on an end portion side of the plurality of photodetectors (52) is set to be greater than weighting of detection signals of photodetectors (52) on a central portion side of the plurality of photodetectors (52).
Abstract:
A radiation detector that allows accurate discrimination of generating positions of fluorescence in a height direction generated in scintillation counter crystals. Specifically, the radiation detector includes scintillation counter crystals whose faces are rough surfaces. This allows suppression of unexpected partial reflection of fluorescence between adjacent scintillation counter crystals, leading to ideal spread of the fluorescence generated in a scintillator. Consequently, a radiation detector that allows accurate discrimination of the generating positions of fluorescence is provided.
Abstract:
A PET apparatus and a timing correction method of this invention select two target gamma-ray detectors which count coincidences, select a reference detector which is one detector out of the two selected gamma-ray detectors, select a gamma-ray detector different from the other, opposite detector, and when repeating the selection, make a time lag histogram concerning two gamma-ray detectors selected in the past a reference, and correct a time lag histogram concerning gamma-ray detectors selected this time based on the reference. By repeating an operation to make the corrected time lag histogram concerning the two gamma-ray detectors a new reference, an optimal time lag histogram can be obtained without repeating many measurements and computations.