Abstract:
A low-temperature process for preparing flat carbon based nanostructured material, and namely foliated, fine graphite particles having low thickness and high aspect ratio. The process comprises the steps of: subjecting a particulate graphite to a mechanical attrition treatment in the presence of an alkaline reactant or a mixture comprising the alkaline reactant; exposing the graphite particles to an intercalating solvent to cause the solvent to penetrate between carbon layers of graphite; and delivering an ultrasonic energy into a dispersion of the graphite particles for a period of time sufficient to cause the formation of the nanostructured material. The carbon based nanostructures (CBNS) obtained by this method have a thickness in the range of 4-20 nm and an aspect ratio 500-7000 and various surface chemistry, and can be used as a highly functional graphite material in a wide range of applications, in particular for electrochemical applications in batteries and fuel cells.
Abstract:
Provided are a conductive pattern manufacturing method and a conductive pattern formed substrate, capable of easily achieving a narrow pitch. A metal nanowire layer 12 is formed on the entirety of a part of at least one of the main faces of a substrate 10, pulsed light is irradiated thereto through a mask 14 provided with a light transmission portion 14a formed in a predetermined pattern, and the metal nanowires in the metal nanowire layer 12 at the region having the above predetermined pattern were sintered, to thereby obtain conductivity at the predetermined patterned region. Accordingly, a substrate provided with a conductive pattern having any selected pattern can be produced by simple steps.