Abstract:
A carbon material and a material for a battery electrode which is suitable for use as an electrode material for an aqueous-electrolyte secondary battery, which material includes optical structures having a specific shape, and in which material the ratio IG/ID (R value) between the peak intensity (ID) of a peak in a range of 1300 to 1400 cm−1 and the peak intensity (IG) of a peak in a range of 1580 to 1620 cm−1 measured by Raman spectroscopy spectra when particles of the carbon material are measured with Raman microspectrometer is 0.38 or more and 1.2 or less and the average interplanar spacing d002 of plane (002) by the X-ray diffraction method is 0.335 nm or more and 0.338 nm or less; and a secondary battery excellent in charge/discharge cycle characteristics and large current load characteristics.
Abstract:
A method for manufacturing a graphite powder for a negative electrode material for a lithium-ion secondary battery, which includes a process of pulverizing a graphite precursor, and subjecting a mixture of the pulverized graphite precursor and an alkaline compound to graphitization treatment by heating the mixture at 2,800 to 3,500° C. Also disclosed is a graphite powder obtained by the manufacturing method, a negative electrode for a lithium-ion secondary battery containing the graphite powder and a lithium-ion battery provided with the negative electrode.
Abstract:
A non-flaky carbon material having specific optical structures, wherein the ratio between the peak intensity I110 of (110) plane and the peak intensity I004 of (004) plane of a graphite crystal determined by the powder XRD measurement, I110/I004, is 0.10 or more and 0.35 or less; an average circularity is 0.80 or more and 0.95 or less; d002 is 0.337 nm or less; and the total pore volume of pores having a diameter of 0.4 μm or less measured by the nitrogen gas adsorption method is 25.0 μl/g or more and 40.0 μl/g or less. Also disclosed is a method for producing the carbon material, a carbon material for a battery electrode, a paste for an electrode incorporating the carbon material for a battery electrode, an electrode for a lithium battery incorporating a formed body of the paste for an electrode, a lithium-ion secondary battery including the electrode and a method for producing the electrode.
Abstract:
The present invention provides a carbon material and a material for a battery electrode which is suitable for use as an electrode material for an aqueous-electrolyte secondary battery, which material comprises optical structures having a specific shape, and in which material the ratio IG/ID (R value) between the peak intensity (ID) of a peak in a range of 1300 to 1400 cm−1 and the peak intensity (IG) of a peak in a range of 1580 to 1620 cm−1 measured by Raman spectroscopy spectra when particles of the carbon material are measured with Raman microspectrometer is 0.38 or more and 1.2 or less and the average interplanar spacing d002 of plane (002) by the X-ray diffraction method is 0.335 nm or more and 0.338 nm or less; and a secondary battery excellent in charge/discharge cycle characteristics and large current load characteristics.
Abstract translation:本发明提供一种碳材料和电池电极用材料,其适用于水电解质二次电池的电极材料,该材料包括具有特定形状的光学结构,其中材料的比例为IG / ID 在1300〜1400cm -1范围内的峰的峰强度(ID)与通过拉曼光谱测定的1580〜1620cm -1范围的峰的峰强度(IG)之间的差(R值) 使用拉曼显微光谱仪测定碳材料的粒子为0.38以上且1.2以下,通过X射线衍射法得到的平面(002)的平均晶面间距d002为0.335nm以上且0.338nm以下, 以及充电/放电循环特性和大电流负载特性优异的二次电池。
Abstract:
A carbon material for negative electrodes in lithium ion secondary battery, wherein a specific surface area is not less than 1.5 m2/g and not more than 6.5 m2/g, a tap density is not less than 0.5 g/cm3 and not more than 1.3 g/cm3, a Raman R value is not less than 0.1 and not more than 0.4, no diffraction peak is present in a range of diffraction angle of 42.7° to 43.7° in X-ray diffraction analysis, d002 is not more than 0.337 nm, and at most one peak is present in a range of not less than 500° C. and less than 1000° C. in thermogravimetric-differential thermal analysis.