Abstract:
A distributed network system can include a master controller having a master clock configured to output a master time, and a master transmission delay time module configured to modify the master time to add a known master transmission delay to the master time to output an adjusted master time. The system can include a first device operatively connected to the master controller and configured to receive the adjusted master time from the master controller.
Abstract:
A method of adjusting a rotary blade includes receiving performance data for a rotary blade, receiving an adjustment constraint for the rotary blade, defining an adjustment space for alternative adjustment solutions for the rotary blade including a plurality of alternative adjustment solutions, and calculating expected performance for one of the plurality of alternative adjustment solutions. Based on the expected performance of the one of the plurality of alternative adjustment solutions, the method determines whether to calculate expected performance for another of the plurality of alternative adjustment solutions.
Abstract:
The present disclosure relates to a method to determine, from a measured result and an assumed adjustment set, the probability that a permutation to the assumed adjustment set was implemented or other error, such as a sensor error, is occurring. The determination of probability of a permutation of the adjustment set may be based on the error between the predicted response and the measured actual response for the assumed adjustment set and permutations of the assumed adjustment set. A number of statistical comparisons may be performed between the assumed adjustment set and the permutation sets to determine which are closer to the measured actual response. A probability value may be assigned to each adjustment set as to the likelihood of their having been implemented.
Abstract:
The present disclosure relates to a method to determine, from a measured result and an assumed adjustment set, the probability that a permutation to the assumed adjustment set was implemented or other error, such as a sensor error, is occurring. The determination of probability of a permutation of the adjustment set may be based on the error between the predicted response and the measured actual response for the assumed adjustment set and permutations of the assumed adjustment set. A number of statistical comparisons may be performed between the assumed adjustment set and the permutation sets to determine which are closer to the measured actual response. A probability value may be assigned to each adjustment set as to the likelihood of their having been implemented.
Abstract:
A control module for a distributed sensor system can include a non-application specific configurable module configured to operate as a function of controller configuration settings data, at least a first memory configured to store the controller configuration settings data, at least one external interface module configured to connect with a master host module of the sensor system to receive updated controller configuration settings data, the control module configured to receive and store the updated controller configuration settings in the first memory thereof via the at least one external interface module, and a subnet interface module configured to connect to one or more configurable sensor nodes on a subnetwork, wherein the control module is configured to control and/or configure the one or more sensor nodes as a function of the controller configuration setting data and receive sensor data from the one or more sensor nodes.
Abstract:
A control module for a distributed sensor system can include a non-application specific configurable module configured to operate as a function of controller configuration settings data, at least a first memory configured to store the controller configuration settings data, at least one external interface module configured to connect with a master host module of the sensor system to receive updated controller configuration settings data, the control module configured to receive and store the updated controller configuration settings in the first memory thereof via the at least one external interface module, and a subnet interface module configured to connect to one or more configurable sensor nodes on a subnetwork, wherein the control module is configured to control and/or configure the one or more sensor nodes as a function of the controller configuration setting data and receive sensor data from the one or more sensor nodes.
Abstract:
A method of visualizing track and balance performance includes receiving data indicating track and balance of a rotary blade and receiving a constraint. A first performance level based on the data is determined. A second performance level based on the data and the constraint is determined. The first and second performance levels are displayed on a display unit for visualizing differences between the first and second performance levels.
Abstract:
A method of adjusting a rotary blade includes receiving performance data for a rotary blade, receiving an adjustment constraint for the rotary blade, defining an adjustment space for alternative adjustment solutions for the rotary blade including a plurality of alternative adjustment solutions, and calculating expected performance for one of the plurality of alternative adjustment solutions. Based on the expected performance of the one of the plurality of alternative adjustment solutions, the method determines whether to calculate expected performance for another of the plurality of alternative adjustment solutions.
Abstract:
A sensor node for a distributed sensing system, can include a physical memory configured to store configuration settings data, one or more sensor channels configured to interface with one or more physical sensors to receive signals from the one or more physical sensors, and one or more configurable logic modules connected to the physical memory and operative to receive the configuration settings data and to be configured by the configuration settings data into a logic state to control whether and/or how the one or more one or more configurable logic modules receive and/or processes data from the one or more sensor channels. The one or more configurable logic modules can include one or more FPGAs and/or PLDs, for example.
Abstract:
A distributed network system can include a master controller having a master clock configured to output a master time, and a master transmission delay time module configured to modify the master time to add a known master transmission delay to the master time to output an adjusted master time. The system can include a first device operatively connected to the master controller and configured to receive the adjusted master time from the master controller.