Abstract:
A graphene oxide-based membrane There is provided a graphene oxide-based membrane comprising a substrate and a plurality of layers of single-layered graphene oxide formed on the substrate, each of the plurality of layers of single-layered graphene oxide is functionalised by at least one diamine functional group, wherein interlayer spacing between two adjacent layers of single-layered graphene oxide is ≤ 10 Å. The membrane may be comprised in an electrocapacitive unit. There is also provided a method of forming the membrane.
Abstract:
The invention generally relates to a carbon-based boron removal medium with hydroxyl group and amine group, and in particular, to a method for forming the carbon-based boron removal medium. In various embodiments, nitrogen-doped (“N-doped”) graphene oxide is synthesized by a simple two-step process: (1) oxidation of graphite to graphene oxide, and (2) nitrogen-doping (“N-doping”) the graphene oxide to form the amine group. The resultant N-doped graphene oxide can efficiently remove boron from aqueous solutions. The invention also generally relates to a boron sensing medium and its use in conductometric measurement techniques to detect and measure the amount of boron present in aqueous solutions.
Abstract:
In one embodiment, the invention relates to a carbon-based boron removal medium with hydroxyl groups and amine group, and in particular, to a method for forming the carbon-based boron removal medium. In a specific embodiment, nitrogen-doped (“N-doped”) graphene oxide is synthesized by a simple two-step process: (1) oxidation of graphite to graphene oxide, and (2) nitrogen-doping (“N-doping”) the graphene oxide to form the amine group. The resultant N-doped graphene oxide can efficiently remove boron from aqueous solutions. In another embodiment, a method of sensing or detecting the presence of boron in an aqueous solution by using a boron sensing medium comprises at least two hydroxyl groups and at least one pyridinic nitrogen or pyrrolic nitrogen or quaternary nitrogen (i.e. pyridoxine, in particular vitamin B6). The boron ions in the solution would form a highly ionized complex, which can cause significant increase in electrical conductivity of the solution, which can then be used to measure the concentration of boron in said solution.
Abstract:
A lithium (Li) ion battery includes a first electrode with a second electrode, and a shutdown polymer additive on an outer surface of the first electrode. The shutdown polymer additive includes at least two polyethylene layers, each polyethylene layer comprising a plurality of polyethylene microspheres. Each polyethylene microsphere is wrapped with carbon nanotubes. The polyethylene microspheres interconnect with each other such that the carbon nanotubes form a conductive network. The polyethylene layers are provided at predetermined areas of the outer surface of the first electrode.