Abstract:
When molding surfaces (50A) of a pair of dies (50) are to be cleaned by air-blowing, air is blown towards the molding surfaces (50A) from blowing nozzles (22A) of a cleaning blowing function portion (22) while a moving body (16) is reciprocatingly moved by driving force of a driving mechanism (18). When a parting agent is to be applied to the molding surfaces (50A) of the pair of dies (50), the mold release agent is jetted out towards the molding surfaces (50A) from spraying nozzles (24A) of a parting agent application function portion (24) while the moving body (16) is reciprocatingly moved by the driving force of the driving mechanism (18). In both of these situations, at the same time as the treatment of the molding surfaces (50A), a cleaning brush (32) reciprocatingly moves together with the moving body (16) and sweeps a device floor surface (12).
Abstract:
Sand for a casting mold including sand, a binder, and an inorganic compound particle having poor water solubility and generating a gas, which is at least one of water vapor or carbon dioxide gas, by heat from a molten metal.
Abstract:
A sand-mold molding method for producing a molded article obtained by packing foamed sand may include stirring a binder with an aggregate to form foamed sand; forming a cavity via clamping a metallic mold closed; packing the foamed sand into the cavity of the metallic mold and then heating and solidifying the foamed sand; and opening the metallic mold partially to provide a gap in the metallic mold while maintaining the cavity.
Abstract:
First, a supply device supplies a foamed kneaded material into a cylinder. Then, in a state in which an internal space of the cylinder is communicated with a pattern forming space of a mold, the piston disposed in the cylinder is moved toward the foamed kneaded material side while opening a gas release hole formed piercing through the piston. Then, at a timing when the piston has reached an expected position where the piston is expected to be on contacting the foamed kneaded material supplied into the cylinder, the gas release hole is closed by an open-close plug. Then, the foamed kneaded material supplied into the cylinder is pressed toward the pattern forming space side of the mold by moving the piston toward the foamed kneaded material side.
Abstract:
To provide an apparatus for reclaiming foundry sand and a method for reclaiming foundry sand that can effectively remove binders and so on that attach to returned foundry sand that has been used. Foundry sand that has been used is supplied from a chute for feeding sand 14A to a rotor 16. The rotor 16 is rotated by a driver 20 so that frictional force is generated on the sand in the rotor 16. Then, the sand in the rotor 16 is dropped into the container for washing with water 30 that is located below the rotor 16. In the container for washing with water 30, an agitator 34 is rotated by the driver 20 so that the sand in the container for washing with water 30 is agitated and washed with water.
Abstract:
An opening portion that is formed so as to pass-through an opening/closing plate portion of a gate, can be disposed at a region overlapping a lower end opening of a hopper. The opening portion is structured by a first pass-through portion, and a second pass-through portion that is formed so as to be continuous with the first pass-through portion. A width, in a direction orthogonal to a lined-up direction in which the first pass-through portion and the second pass-through portion are lined up, is narrower than the first pass-through portion. Further, a driving mechanism moves the gate such that the opening/closing plate portion moves in the lined-up direction as seen in a plan view. Based on a preset target value of weight of sand, a control section controls the driving mechanism so as to decrease an amount of overlap of the opening portion of the gate and the lower end opening of the hopper in a stepwise manner in accordance with an increase in the weight of the sand measured by a scale.
Abstract:
First, a supply device supplies a foamed kneaded material into a cylinder. Then, in a state in which an internal space of the cylinder is communicated with a pattern forming space of a mold, the piston disposed in the cylinder is moved toward the foamed kneaded material side while opening a gas release hole formed piercing through the piston. Then, at a timing when the piston has reached an expected position where the piston is expected to be on contacting the foamed kneaded material supplied into the cylinder, the gas release hole is closed by an open-close plug. Then, the foamed kneaded material supplied into the cylinder is pressed toward the pattern forming space side of the mold by moving the piston toward the foamed kneaded material side.
Abstract:
A mold-making device may include a stirring device including a stirring tank and at least one stirring blade. The stirring device may further include a packing port that is configured to open and close on a bottom of the stirring tank. The stirring device may stir a particulate aggregate and at least one additive by rotating the at least one stirring blade within the stirring tank to yield an admixture. A forming mold may communicate with the packing port and mold the admixture into a predetermined shape. A packing device may compress a surface of the admixture within the stirring tank and pack the admixture into the forming mold via the packing port.
Abstract:
A core forming device is equipped with a kneading tank in which raw materials of a core are kneaded, a raw material supply unit that supplies the raw materials to the kneading tank, a mold that accommodates a kneaded material including the raw materials kneaded in the kneading tank and that forms the core, a piston that injects the kneaded material into the mold, a position sensor that detects a position of the piston, and a control unit that controls a supply amount of the raw materials supplied to the kneading tank from the raw material supply unit. The control unit determines the supply amount of the raw materials based on a difference between the position of the piston upon completion of injection and a reference position of the piston.
Abstract:
To provide an apparatus for reclaiming foundry sand and a method for reclaiming foundry sand that can effectively remove binders and so on that attach to returned foundry sand that has been used. Foundry sand that has been used is supplied from a chute for feeding sand 14A to a rotor 16. The rotor 16 is rotated by a driver 20 so that frictional force is generated on the sand in the rotor 16. Then, the sand in the rotor 16 is dropped into the container for washing with water 30 that is located below the rotor 16. In the container for washing with water 30, an agitator 34 is rotated by the driver 20 so that the sand in the container for washing with water 30 is agitated and washed with water.