摘要:
A high-temperature-resistant casting system comprises following casting elements in a connection relationship: a sprue cup (1) and a down sprue (2) connected with a lower end of the sprue cup, wherein the other end of the down sprue is connected with one end of a filtering element (6), the other end of the filtering element is connected with a three-way pipe (3), openings in two sides of the three-way pipe are connected with one end of an inlet section of a runner (4), and one end of an outlet section of the runner is connected with a tapered elbow (5). The casting elements comprise the following components in percentage by weight: 41-51% of a refractory fiber, 40-51% of a silicate fiber and 5-19% of a binder. A preparation method of the high-temperature-resistant casting system is further provided.
摘要:
An amount of a halloysite clay, used as an additive in a foundry mix composition having a polyurethane-based binder system, reduces the amount of smoke emitted when molds and cores formed from the composition are exposed to molten metal, as compared to when the halloysite clay is not used.
摘要:
The present invention relates to the use of closed-pore microspheres of expanded perlite as a filler for producing moldings for the foundry industry, to a composition for producing moldings for the foundry industry, comprising closed-pore microspheres of expanded perlite as a filler, and a binder, the binder being selected from the group consisting of water glass, phenol-formaldehyde resins, two-component systems comprising as reactants a polyisocyanate and a polyol component containing free hydroxyl groups (OH groups), and starch, and also to moldings for the foundry industry and to a process for producing a molding for the foundry industry.
摘要:
Compositions useful for foundry processes such as green sand casting are discussed. The compositions may comprise an aggregate, at least one inorganic binding agent, and at least one high aspect ratio silicate. For example, the composition may comprise sand, one or more clay materials serving as a binding agent, and a high aspect ratio silicate chosen from mica, talc, or a combination thereof. The composition may be formed into a green sand mold for use in casting molded articles. Incorporation of the high aspect ratio silicate may help to improve the quality of the casted article.
摘要:
A molding material mixture for producing casting molds for metal processing, particularly for non-ferrous metals, such as aluminum or magnesium, is intended to reduce problems such as metal-mold reaction and/or shrinkage porosity defect. The free-flowing refractory molding material in the molding material mixture is coated with a mixture of inorganic salts exhibiting a eutectic melting point in the range of about 400 C to about 500 C, particularly in the range of about 420 C to about 460 C. Preferably this coating occurs by contacting the inorganic salt mixture with the molding material mixture at a temperature between 500 C and 700 C, in a manner that maintains the free-flowing nature of the coated product. One mixture of inorganic salts that is used is a mixture consisting of, by weight: 74% potassium fluoroborate; 15% potassium chloride; and 12% potassium fluoride. This mixture has a eutectic melting point of 420 C.
摘要:
A method to form a displacement, the method including disposing a powder blend comprising a plurality of ground ceramic particles and a plurality of ground resin particles into a mold, densifying the powder blend while in the mold, heating the mold to form a first displacement, impregnating said first displacement with a polymer precursor compound to form a second displacement, and heating the second displacement to form a third displacement.
摘要:
The present invention discloses a mold core assembly. The mold core assembly includes at least one core. The core comprises a main body member and a high temperature-resistant material with a melting point over 1500° C., the length-diameter ratio of the main body member is greater than 50, and the main body member includes a high melting point metal with a melting point over 1500° C. The mold core assembly also includes a shell mold, wherein the shell mold encloses the core to form a cavity between the shell mold and the core, so as to accommodate a molten casting metal. The present invention further discloses an investment casting method.
摘要:
The disclosure relates generally to mold compositions and methods of molding and the articles so molded. More specifically, the disclosure relates to silicon carbide-containing mold compositions, silicon carbide-containing intrinsic facecoat compositions, and methods for casting titanium-containing articles, and the titanium-containing articles so molded.
摘要:
Methods and compositions for forming porous ceramic articles are provided. The method is forming a composition including liquid siloxanes, ceramic particles, a catalyst, and a pore-former; shaping the composition; curing the composition to form a green body; volatilizing the pore-former before or after curing the composition; and firing the green body. The pore-former is a silicon-bearing agent with an average molecular weight under 1300 grams per mole, or a molecule with a molecular weight under 1,000 grams per mole and a freezing point between −40° C. and 25° C. that is soluble in the liquid. The composition comprises liquid siloxanes, ceramic particles, a catalyst, and a pore-former, which is an agent with an average molecular weight under 1300 grams per mole or a molecule with a molecular mass under 1,000 grams per mole and a freezing point between −40° C. and 25° C. that is soluble in the liquid.
摘要:
A precision-casting core body is formed by mixing and sintering silica particles and silica fume. The resistance of the mixture of silica fume decreases during heating injection molding, and hence the fluidity is improved by the addition of silica fume. As a result, since the fluidity is improved, it is possible to decrease an injection molding pressure when a core is manufactured. Further, the mixture can be applied to a thin compact and a complex compact with improved fluidity.