Abstract:
A method for logging a user into a device for a power generation plant, using a service gateway, wherein an access authorization of the user for the device is stored on the service gateway, is disclosed. The method includes authenticating the user on the service gateway, sending a device access request using an access device from the user to the service gateway specifying an identifier of the device for the power generation plant, and comparing a device secret stored on the service gateway with a copy of the device secret generated using the device secret and stored on the device, via an SRP protocol.
Abstract:
A method for defining authentication data of a user at an energy conversion device connected to a grid and a source via a network connection includes receiving at the energy conversion device, via the network connection, a request from the user to newly assign authentication data, receiving at the energy conversion device desired authentication data of the user via the network connection, and storing the desired authentication data in the energy conversion device for an authentication of the user in the event of subsequent attempts to access the energy conversion device, when the energy conversion device is disconnected from the connected grid within a first predefined time window after receiving the request.
Abstract:
A method includes searching for a point of maximum power based on a systematic load variation, setting the point of maximum power as the operating point of the photovoltaic generator, and tracking the operating point based on a load variation with a narrow variation range. The method also includes analyzing operating variables of the photovoltaic generator to determine the level of probability that the operating point deviates from the point of maximum power, selectively interrupting the tracking and carrying out another search to determine the point of maximum power as a function of the analysis of the operating variables, and setting the point of maximum power as the operating point, and resuming the tracking. The method further takes into account previous searches carried out in the presence of comparable operating variables to determine the probability.
Abstract:
A method for locking a connection between a connector and a mating connector arranged on an electric vehicle is disclosed. The connector is arranged on a charging cable connected to a charging post of a charging station, such as a charging cable fixedly connected to a charging post of a charging station. The connector is associated with a first locking element, and the mating connector is associated with a second locking element, wherein the first locking element and the second locking element cooperate to lock the connection between the connector and the mating connector, and each have an activated state and a deactivated state. The method includes operating the first locking element associated with the connector in an activated state in a first operating mode of the charging station to lock the connection between the connector and the mating connector when the second locking element associated with the mating connector is activated. The method further includes operating the first locking element associated with the connector in a deactivated state in a second operating mode of the charging station to unlock the connection between the connector and the mating connector when the second locking element associated with the mating connector is activated. Additionally described is a charging station which is suitable and set up for carrying out the method.
Abstract:
The power density distribution of a photovoltaic generator of planar extent is determined by measuring an electrical power generated by the photovoltaic generator. Temporal profiles of the measured power with respect to shadow edges migrating across the photovoltaic generator are evaluated taking account of edge direction and edge transverse speed of the respective shadow edge. The power density distribution is reconstructed from the evaluated temporal profiles for different edge directions.
Abstract:
The power density distribution of a photovoltaic generator of planar extent is determined by measuring an electrical power generated by the photovoltaic generator. Temporal profiles of the measured power with respect to shadow edges migrating across the photovoltaic generator are evaluated taking account of edge direction and edge transverse speed of the respective shadow edge. The power density distribution is reconstructed from the evaluated temporal profiles for different edge directions.
Abstract:
A method includes searching for a point of maximum power based on a systematic load variation, setting the point of maximum power as the operating point of the photovoltaic generator, and tracking the operating point based on a load variation with a narrow variation range. The method also includes analyzing operating variables of the photovoltaic generator to determine the level of probability that the operating point deviates from the point of maximum power, selectively interrupting the tracking and carrying out another search to determine the point of maximum power as a function of the analysis of the operating variables, and setting the point of maximum power as the operating point, and resuming the tracking. The method further takes into account previous searches carried out in the presence of comparable operating variables to determine the probability.