Abstract:
An annular wall for a turbomachine combustion chamber is disclosed, comprising cooling orifices through which cooling air can circulate through the annular wall, each having an air injection axis oriented orthogonal to a longitudinal axis of the annular wall. The cooling orifices are distributed into first annular rows of cooling orifices oriented in a first circumferential direction from an outer face as far as an inner face of the annular wall, and second annular rows of cooling orifices oriented in a second circumferential direction opposite the first circumferential direction from the outer face as far as the inner face of said annular wall. The first annular rows and the second annular rows of cooling orifices are arranged alternately along the longitudinal axis.
Abstract:
A device for cooling of an annular wall of a turbomachine combustion chamber provided with micro-perforations, and in particular the cooling of a region of the wall facing a wake induced by an ignition plug, the device includes, a deflector designed to divert air immersing the ignition plug towards a median plane of the wake and towards the annular wall of the combustion chamber, so as to increase the air pressure within the wake in proximity to the annular wall.
Abstract:
A turbine engine wall having a cold side and a hot side and including a plurality of cooling orifices for enabling air flowing on the cold side of the wall to penetrate to the hot side at least some of the cooling orifices being plugged by a plugging material so as to define a minimum level of porosity for the wall corresponding to putting the turbine engine into service, and the plugged cooling orifices being suitable for being unplugged progressively throughout the lifetime of the turbine engine in order to define a maximum level of porosity for the wall corresponding to an end of lifetime for the turbine engine, the plugging being performed by alternating at least one of the following rows or lines: circumferential rows, axial rows, diagonal lines, so as to lie in the range one-third to one-half of the maximum porosity.
Abstract:
The invention relates to a spark plug for combustion chamber of a gas turbine engine comprising: an external body (1) forming ground electrode, intended to be received mainly in a bypass of the combustion chamber, an internal central electrode (2), an interposed insulator (3) with clearance between the external body (1) and the internal electrode (2), said spark plug terminating in a nose forming portion (5) intended for its part to be received in the flame tube of the chamber of the combustion chamber, a semi-conductor element being interposed between the central electrode and the ground electrode at the level of said nose forming portion, wherein the external body (1) comprises at least one cooling air inlet (6) which communicates inside the spark plug with at least one outlet (8, 9, 10) arranged at the level of the nose forming portion.