Abstract:
A solid-state image pickup unit of the invention includes a plurality of pixels, each of which includes a photoelectric conversion element. The photoelectric conversion element includes a photoelectric conversion layer; and first and second electrodes provided with the photoelectric conversion layer in between, the photoelectric conversion layer including a first organic semiconductor of a first conductive type and a second organic semiconductor of a second conductive type, and being configured by addition of a third organic semiconductor made of a derivative or an isomer of one of the first and second organic semiconductors.
Abstract:
[Object] To provide an ultrasonic transducer, a diagnostic ultrasonic probe, a surgical instrument, a sheet-type ultrasonic probe, and an electronic apparatus by which both of favorable reflection characteristics and suppression of reverberation at low cost can be achieved.[Solving Means] An ultrasonic transducer for ultrasonic imaging according to the present technology includes a piezoelectric layer, an acoustic attenuation layer, and an acoustic reflection layer. The piezoelectric layer is formed of a piezoelectric material and generates ultrasonic waves. The acoustic attenuation layer is formed of an acoustic attenuation material having an acoustic impedance lower than that of the piezoelectric material. The acoustic reflection layer is arranged on a side of the acoustic attenuation layer and which is formed of an acoustic reflection material having an acoustic impedance higher than that of the acoustic attenuation material, the side being opposite to the piezoelectric layer. The acoustic attenuation layer has a thickness which is integer multiple of ½ of a wavelength of an ultrasonic wave generated in the piezoelectric layer, the wavelength being inside the acoustic attenuation layer.
Abstract:
An imaging system and an electronic apparatus are provided and include an image pickup device including a plurality of pixels; a variable filter provided on a light receiving face of the image pickup device, the variable filter is configured to selectively transmit incident light; wherein the image pickup device is coupled to the variable filter via an anisotropic conductive film and a connection bump.
Abstract:
There is provided an image pickup unit capable of suppressing occurrence of false color and color mixture and acquiring a color image with high image quality. The image pickup unit includes: an image sensor including a plurality of pixels and acquiring an image pickup data; a variable filter provided on a light receiving face of the image sensor, and transmitting a selective wavelength; and a filter drive section (a wavelength selection circuit and a system control section) driving the variable filter and thereby setting its transmission wavelength. By acquiring the image pickup data while time-divisionally switching the transmission wavelength of the variable filter, pixel data corresponding to the transmission wavelength of the variable filter are acquired in a temporally-successive manner.
Abstract:
A semiconductor device includes: a cooling function component including an active region made of an impurity region and formed on a surface of a semiconductor layer, an N-type gate made of a semiconductor including an N-type impurity, a P-type gate made of a semiconductor including a P-type impurity, a first metal wiring connected to the N-type gate, the P-type gate and the active region, a second metal wiring connected to the P-type gate and the N-type gate, and a heat releasing portion connected to the second metal wiring for releasing heat to the outside.