Abstract:
Semiconductor devices and multiply-accumulate operation devices are disclosed. In one example, a semiconductor device includes synapses in which a nonvolatile variable resistance element taking a first resistance value and a second resistance value lower than the first resistance value and a fixed resistance element having a resistance value higher than the second resistance value are connected in series. An output line outputs a sum of currents flowing through the plurality of synapses.
Abstract:
An organic photoelectric conversion element, an imaging device, and an optical sensor, which can detect a plurality of wavelength regions by a single element structure, are provided. The photoelectric conversion element is formed by providing an organic photoelectric conversion portion including two or more types of organic semiconductor materials having different spectral sensitivities between the first and the second electrodes. Wavelength sensitivity characteristics of the photoelectric conversion element change according to a voltage (bias voltage) applied between the first and the second electrodes. The photoelectric conversion element is mounted in the imaging device and the optical sensor.
Abstract:
An organic photoelectric conversion element, an imaging device, and an optical sensor, which can detect a plurality of wavelength regions by a single element structure, are provided. The photoelectric conversion element is formed by providing an organic photoelectric conversion portion including two or more types of organic semiconductor materials having different spectral sensitivities between the first and the second electrodes. Wavelength sensitivity characteristics of the photoelectric conversion element change according to a voltage (bias voltage) applied between the first and the second electrodes. The photoelectric conversion element is mounted in the imaging device and the optical sensor.
Abstract:
[Problem] Provided are a semiconductor device and a multiply-accumulate operation device that enable integration at a higher density by further reducing a mounting area per synapse. [Solution] A semiconductor device including: a plurality of synapses in which a nonvolatile variable resistance element taking a first resistance value and a second resistance value lower than the first resistance value and a fixed resistance element having a resistance value higher than the second resistance value are connected in series; and an output line that outputs a sum of currents flowing through the plurality of synapses. [Selected Drawing] FIG. 3
Abstract:
An organic photoelectric conversion element, an imaging device, and an optical sensor, which can detect a plurality of wavelength regions by a single element structure, are provided. The photoelectric conversion element is formed by providing an organic photoelectric conversion portion including two or more types of organic semiconductor materials having different spectral sensitivities between the first and the second electrodes. Wavelength sensitivity characteristics of the photoelectric conversion element change according to a voltage (bias voltage) applied between the first and the second electrodes. The photoelectric conversion element is mounted in the imaging device and the optical sensor.
Abstract:
An imaging system and an electronic apparatus are provided and include an image pickup device including a plurality of pixels; a variable filter provided on a light receiving face of the image pickup device, the variable filter is configured to selectively transmit incident light; wherein the image pickup device is coupled to the variable filter via an anisotropic conductive film and a connection bump.
Abstract:
Provided is a light receiving/emitting element and a light receiving/emitting apparatus that can be easily manufactured and allow high-sensitivity detection.The light receiving/emitting element is configured to include a first organic photoelectric conversion unit and a second organic photoelectric conversion unit that is disposed on the first organic photoelectric conversion unit and is different in spectral sensitivity from the first organic photoelectric conversion unit, wherein one of the first organic photoelectric conversion unit and the second organic photoelectric conversion unit acts as a light receiving unit and the other acts as a light emitting unit. The light receiving/emitting apparatus is configured to have the light receiving/emitting element mounted thereon.
Abstract:
There is provided an image pickup unit capable of suppressing occurrence of false color and color mixture and acquiring a color image with high image quality. The image pickup unit includes: an image sensor including a plurality of pixels and acquiring an image pickup data; a variable filter provided on a light receiving face of the image sensor, and transmitting a selective wavelength; and a filter drive section (a wavelength selection circuit and a system control section) driving the variable filter and thereby setting its transmission wavelength. By acquiring the image pickup data while time-divisionally switching the transmission wavelength of the variable filter, pixel data corresponding to the transmission wavelength of the variable filter are acquired in a temporally-successive manner.
Abstract:
A handheld instrument for endoscope surgery includes a shaft, a jaw, a handle, a phased array ultrasonic sensor, and a signal wiring. The jaw is placed at one end of the shaft and has a holding function. The handle is placed at the other end of the shaft and includes an operation mechanism for operating the jaw. The phased array ultrasonic sensor is mounted on the jaw and has an imaging function. The signal wiring is provided to the shaft and connects the ultrasonic sensor and the handle.
Abstract:
An organic photoelectric conversion element, an imaging device, and an optical sensor, which can detect a plurality of wavelength regions by a single element structure, are provided. The photoelectric conversion element is formed by providing an organic photoelectric conversion portion including two or more types of organic semiconductor materials having different spectral sensitivities between the first and the second electrodes. Wavelength sensitivity characteristics of the photoelectric conversion element change according to a voltage (bias voltage) applied between the first and the second electrodes. The photoelectric conversion element is mounted in the imaging device and the optical sensor.