BACKWARD ANTI-COLLISION DRIVING DECISION-MAKING METHOD FOR HEAVY COMMERCIAL VEHICLE

    公开(公告)号:US20230182725A1

    公开(公告)日:2023-06-15

    申请号:US17766870

    申请日:2021-04-12

    Abstract: The present invention discloses a backward anti-collision driving decision-making method for a heavy commercial vehicle. Firstly, a traffic environment model is established, and movement state information of a heavy commercial vehicle and a vehicle behind the heavy commercial vehicle is collected. Secondly, a backward collision risk assessment model based on backward distance collision time is established, and a backward collision risk is accurately quantified. Finally, a backward anti-collision driving decision-making problem is described as a Markov decision-making process under a certain reward function, a backward anti-collision driving decision-making model based on deep reinforcement learning is established, and an effective, reliable and adaptive backward anti-collision driving decision-making policy is obtained. The method provided by the present invention can overcome the defect of lack for research on the backward anti-collision driving decision-making policy for the heavy commercial vehicle in the existing method, can quantitatively output proper steering wheel angle and throttle opening control quantities, can provide effective and reliable backward anti-collision driving suggestions for a driver, and can reduce backward collision accidents.

    JOINT NON-COHERENT INTEGRAL VECTOR TRACKING METHOD BASED ON SPATIAL DOMAIN

    公开(公告)号:US20170276795A1

    公开(公告)日:2017-09-28

    申请号:US15511046

    申请日:2016-06-27

    Abstract: The present invention discloses a joint non-coherent integral vector tracking method based on a spatial domain, which is used for further improving the performance of a vector tracking GPS (Global Positioning System) receiver. In a new vector tracking strategy design, a phase discriminator/a frequency discriminator in a traditional vector tracking loop is discarded, and baseband signals of visible satellites in each channel are taken as an observation value after performing non-coherent integration, and EKE (abbreviation of Extended Kalman Filter) is used to estimate directly and to solve the position, the velocity, a clock error, etc. of the GPS receiver. Because of the existence of non-coherent integral calculation, when GPS satellite signals are relatively weak, a carrier to noise ratio of an observation value may be effectively improved, and the tracking sensitivity is improved.

Patent Agency Ranking