Abstract:
A computer implemented method for determining a vehicle type of a vehicle detected in an image is disclosed. An image having a detected vehicle is received. A number of vehicle models having salient feature points is projected on the detected vehicle. A first set of features derived from each of the salient feature locations of the vehicle models is compared to a second set of features derived from corresponding salient feature locations of the detected vehicle to form a set of positive match scores (p-scores) and a set of negative match scores (n-scores). The detected vehicle is classified as one of the vehicle models based at least in part on the set of p-scores and the set of n-scores.
Abstract:
A method, machine readable medium and system for semantic segmentation of 3D point cloud data includes determining ground data points of the 3D point cloud data, categorizing non-ground data points relative to a ground surface determined from the ground data points to determine legitimate non-ground data points, segmenting the determined legitimate non-ground and ground data points based on a set of common features, applying logical rules to a data structure of the features built on the segmented determined non-ground and ground data points based on their spatial relationships and incorporated within a machine learning system, and constructing a 3D semantics model from the application of the logical rules to the data structure.
Abstract:
A method, machine readable medium and system for semantic segmentation of 3D point cloud data includes determining ground data points of the 3D point cloud data, categorizing non-ground data points relative to a ground surface determined from the ground data points to determine legitimate non-ground data points, segmenting the determined legitimate non-ground and ground data points based on a set of common features, applying logical rules to a data structure of the features built on the segmented determined non-ground and ground data points based on their spatial relationships and incorporated within a machine learning system, and constructing a 3D semantics model from the application of the logical rules to the data structure.
Abstract:
Techniques are disclosed for identifying discriminative, fine-grained features of an object in an image. In one example, an input device receives an image. A machine learning system includes a model comprising a first set, a second set, and a third set of filters. The machine learning system applies the first set of filters to the received image to generate an intermediate representation of the received image. The machine learning system applies the second set of filters to the intermediate representation to generate part localization data identifying sub-parts of an object and one or more regions of the image in which the sub-parts are located. The machine learning system applies the third set of filters to the intermediate representation to generate classification data identifying a subordinate category to which the object belongs. The system uses the part localization and classification data to perform fine-grained classification of the object.
Abstract:
Techniques are disclosed for identifying discriminative, fine-grained features of an object in an image. In one example, an input device receives an image. A machine learning system includes a model comprising a first set, a second set, and a third set of filters. The machine learning system applies the first set of filters to the received image to generate an intermediate representation of the received image. The machine learning system applies the second set of filters to the intermediate representation to generate part localization data identifying sub-parts of an object and one or more regions of the image in which the sub-parts are located. The machine learning system applies the third set of filters to the intermediate representation to generate classification data identifying a subordinate category to which the object belongs. The system uses the part localization and classification data to perform fine-grained classification of the object.
Abstract:
A computer implemented method for determining a vehicle type of a vehicle detected in an image is disclosed. An image having a detected vehicle is received. A number of vehicle models having salient feature points is projected on the detected vehicle. A first set of features derived from each of the salient feature locations of the vehicle models is compared to a second set of features derived from corresponding salient feature locations of the detected vehicle to form a set of positive match scores (p-scores) and a set of negative match scores (n-scores). The detected vehicle is classified as one of the vehicle models models based at least in part on the set of p-scores and the set of n-scores.