Abstract:
A system and method for generating a mixed-reality environment is provided. The system and method provides a user-worn sub-system communicatively connected to a synthetic object computer module. The user-worn sub-system may utilize a plurality of user-worn sensors to capture and process data regarding a user's pose and location. The synthetic object computer module may generate and provide to the user-worn sub-system synthetic objects based information defining a user's real world life scene or environment indicating a user's pose and location. The synthetic objects may then be rendered on a user-worn display, thereby inserting the synthetic objects into a user's field of view. Rendering the synthetic objects on the user-worn display creates the virtual effect for the user that the synthetic objects are present in the real world.
Abstract:
A system and method for efficiently locating in 3D an object of interest in a target scene using video information captured by a plurality of cameras. The system and method provide for multi-camera visual odometry wherein pose estimates are generated for each camera by all of the cameras in the multi-camera configuration. Furthermore, the system and method can locate and identify salient landmarks in the target scene using any of the cameras in the multi-camera configuration and compare the identified landmark against a database of previously identified landmarks. In addition, the system and method provide for the integration of video-based pose estimations with position measurement data captured by one or more secondary measurement sensors, such as, for example, Inertial Measurement Units (IMUs) and Global Positioning System (GPS) units.
Abstract:
A computing system for virtual personal assistance includes technologies to, among other things, correlate an external representation of an object with a real world view of the object, display virtual elements on the external representation of the object and/or display virtual elements on the real world view of the object, to provide virtual personal assistance in a multi-step activity or another activity that involves the observation or handling of an object and a reference document.
Abstract:
A computing system for virtual personal assistance includes technologies to, among other things, correlate an external representation of an object with a real world view of the object, display virtual elements on the external representation of the object and/or display virtual elements on the real world view of the object, to provide virtual personal assistance in a multi-step activity or another activity that involves the observation or handling of an object and a reference document.
Abstract:
A method and apparatus for training and guiding users comprising generating a scene understanding based on video and audio input of a scene of a user performing a task in the scene, correlating the scene understanding with a knowledge base to produce a task understanding, comprising one or more goals, of a current activity of the user, reasoning, based on the task understanding and a user's current state, a next step for advancing the user towards completing one of the one or more goals of the task understanding and overlaying the scene with an augmented reality view comprising one or more visual and audio representation of the next step to the user.
Abstract:
A method and system for analyzing at least one food item on a food plate is disclosed. A plurality of images of the food plate is received by an image capturing device. A description of the at least one food item on the food plate is received by a recognition device. The description is at least one of a voice description and a text description. At least one processor extracts a list of food items from the description; classifies and segments the at least one food item from the list using color and texture features derived from the plurality of images; and estimates the volume of the classified and segmented at least one food item. The processor is also configured to estimate the caloric content of the at least one food item.
Abstract:
A system and method for generating a mixed-reality environment is provided. The system and method provides a user-worn sub-system communicatively connected to a synthetic object computer module. The user-worn sub-system may utilize a plurality of user-worn sensors to capture and process data regarding a user's pose and location. The synthetic object computer module may generate and provide to the user-worn sub-system synthetic objects based information defining a user's real world life scene or environment indicating a user's pose and location. The synthetic objects may then be rendered on a user-worn display, thereby inserting the synthetic objects into a user's field of view. Rendering the synthetic objects on the user-worn display creates the virtual effect for the user that the synthetic objects are present in the real world.
Abstract:
A system and method for efficiently locating in 3D an object of interest in a target scene using video information captured by a plurality of cameras. The system and method provide for multi-camera visual odometry wherein pose estimates are generated for each camera by all of the cameras in the multi-camera configuration. Furthermore, the system and method can locate and identify salient landmarks in the target scene using any of the cameras in the multi-camera configuration and compare the identified landmark against a database of previously identified landmarks. In addition, the system and method provide for the integration of video-based pose estimations with position measurement data captured by one or more secondary measurement sensors, such as, for example, Inertial Measurement Units (IMUs) and Global Positioning System (GPS) units.