Abstract:
A low drop out voltage regulator includes an operational transconductance amplifier configured to be supplied with a supply voltage of the regulator, receive as inputs a reference voltage and a feedback voltage, and generate an intermediate current based upon a difference between the reference voltage and the feedback voltage. A current-to-voltage amplification stage is configured to be supplied with a boosted voltage greater than the supply voltage from a high voltage line, receive as input the intermediate current, and generate a driving voltage that is changed based upon the intermediate current. A pass transistor is controlled with the driving voltage to keep constant on a second conduction terminal thereof a regulated output voltage. A feedback network generates the feedback voltage based on the regulated output voltage.
Abstract:
A circuit includes a current path and a negative bootstrap circuitry coupled to the current path. The current path is coupled between a floating voltage and a reference ground, and includes a current generator coupled through a resistor to the floating voltage at a first node of the current generator. The current generator is controlled by a pulse signal. The negative bootstrap circuitry includes a pump capacitor coupled to a second node of the current generator and to the reference ground. The pump capacitor is configured to provide a negative voltage at the second node of the current generator based on the pulse signal.
Abstract:
A transceiver is connectable to a cable with at least three wires. The transceiver may include a controlled output stage including a high-side leg, having two P-type transistors coupled in series and having a common current terminal, coupled between an output pin and a positive supply pin. The P-type transistors have body regions coupled to the common current terminal of the high-side leg. A low-side leg, includes two N-type transistors coupled in series and having a common current terminal, coupled between the output pin and a negative supply pin. The N-type transistors have body regions coupled to the common current terminal of the low-side leg. The protection circuit also includes a voltage clamper coupled between the common current terminals.
Abstract:
The present disclosure is directed to a voltage regulation circuit receiving as input an input voltage, in particular a DC voltage supply, and outputting a regulated voltage. The voltage regulation circuit includes a voltage reference circuit configured to supply a reference voltage which is independent, in particular with respect to temperature variations. The voltage regulation circuit includes a first circuit branch and a second circuit branch in parallel coupled between the input voltage and ground. The first branch includes a current generator including a first depletion MOSFET transistor, which gate source voltage is a PTAT (Proportional To Absolute Temperature) voltage, coupled between the input voltage and the voltage reference circuit. The voltage reference circuit includes a first enhancement MOSFET transistor, which gate source voltage is a CTAT (Complementary To Absolute Temperature) voltage, coupled to the ground by its source through a source resistor, on which a reference voltage, sum of the PTAT voltage drop on the source resistor and of the gate source voltage of the enhancement MOSFET transistor being formed. The first enhancement MOSFET transistor is arranged on the first branch and coupled by the drain to the first depletion MOSFET transistor in a control node. The control node is coupled to the gate of the first enhancement MOSFET transistor. The first depletion MOSFET transistor injects a PTAT current in the first branch determining a PTAT voltage drop on the source resistor. The second branch includes an output stage coupled between the voltage to regulate and an output node on which the regulated voltage is taken. The output stage includes a second depletion MOSFET transistor on which output is taken at the output node. A resistive voltage divider is coupled to the output node, outputting on a respective divider output node a divided output regulated voltage which is inputted as the process variable of a negative feedback loop which is also coupled to the reference voltage. The output of the negative feedback loop controls the gate of the second MOSFET transistor.
Abstract:
A circuit includes a current path and a negative bootstrap circuitry coupled to the current path. The current path is coupled between a floating voltage and a reference ground, and includes a current generator coupled through a resistor to the floating voltage at a first node of the current generator. The current generator is controlled by a pulse signal. The negative bootstrap circuitry includes a pump capacitor coupled to a second node of the current generator and to the reference ground. The pump capacitor is configured to provide a negative voltage at the second node of the current generator based on the pulse signal.
Abstract:
A circuit includes a current path and a negative bootstrap circuitry coupled to the current path. The current path is coupled between a floating voltage and a reference ground, and includes a current generator coupled through a resistor to the floating voltage at a first node of the current generator. The current generator is controlled by a pulse signal. The negative bootstrap circuitry includes a pump capacitor coupled to a second node of the current generator and to the reference ground. The pump capacitor is configured to provide a negative voltage at the second node of the current generator based on the pulse signal.
Abstract:
Provided is a DC-DC converter with galvanic isolation comprising a resonant oscillator coupled to a primary winding of a galvanic isolation transformer. A rectifier is coupled to a secondary winding of the transformer to provide an output voltage. The DC-DC converter comprises a regulation loop configured to regulate an output voltage with respect to a reference voltage by controlling a current flowing in the resonant oscillator as a function of a result of a signal indicative of the comparison between the output voltage and the reference voltage. The resonant oscillator is configured to operate at a frequency, in particular tuned at sub-resonant point, in particular sub-harmonic frequency, below a resonance frequency of the resonant oscillator which maximizes a quality factor of the resonant oscillator, in particular below a resonance frequency of a LC tank circuit comprised in the resonant oscillator which maximizes a quality factor of the LC tank circuit.