Abstract:
A voltage regulator includes a pre-regulation circuit and a low drop-out voltage regulator. The pre-regulation circuit is configured to generate a first power supply voltage based on an input voltage. The low drop-out voltage regulator is configured to generate a second power supply voltage based on the first power supply voltage. Additionally, the low drop-out voltage regulator is configured to filter a low-frequency component of the first power supply voltage.
Abstract:
A USB Type-C device supporting a bidirectional power supply, includes: a first device terminal configured to be coupled to a second USB Type-C device; a second device terminal configured to be coupled to a rechargeable DC voltage power source; and a reversible switched-mode power supply coupled to the first device terminal and the second device terminal.
Abstract:
A module incorporated within a system-on-a-chip operating in a steady-state power supply phase is powered by supplying to the module a regulated power supply voltage obtained from a feedback control loop. The receives a main power supply voltage and a negative feedback voltage. The negative feedback voltage is generated inside the system-on-a-chip starting from an effective supply voltage of the module and from a setpoint signal corresponding to a desired regulated power supply voltage.
Abstract:
A USB Type-C device supporting a bidirectional power supply, includes: a first device terminal configured to be coupled to a second USB Type-C device; a second device terminal configured to be coupled to a rechargeable DC voltage power source; and a reversible switched-mode power supply coupled to the first device terminal and the second device terminal.
Abstract:
A module incorporated within a system-on-a-chip operating in a steady-state power supply phase is powered by supplying to the module a regulated power supply voltage obtained from a feedback control loop. The receives a main power supply voltage and a negative feedback voltage. The negative feedback voltage is generated inside the system-on-a-chip starting from an effective supply voltage of the module and from a setpoint signal corresponding to a desired regulated power supply voltage.
Abstract:
A module incorporated within a system-on-a-chip operating in a steady-state power supply phase is powered by supplying to the module a regulated power supply voltage obtained from a feedback control loop. The receives a main power supply voltage and a negative feedback voltage. The negative feedback voltage is generated inside the system-on-a-chip starting from an effective supply voltage of the module and from a setpoint signal corresponding to a desired regulated power supply voltage.
Abstract:
A module incorporated within a system-on-a-chip operating in a steady-state power supply phase is powered by supplying to the module a regulated power supply voltage obtained from a feedback control loop. The receives a main power supply voltage and a negative feedback voltage. The negative feedback voltage is generated inside the system-on-a-chip starting from an effective supply voltage of the module and from a setpoint signal corresponding to a desired regulated power supply voltage.