Abstract:
A control device for a switching regulator, having two or more converter stages operating with interleaved operation, each comprising an inductive element and a switch element, generates command signals having a switching period for controlling switching of the switch elements and determining alternation of a storage phase of energy in the respective inductive element and a transfer phase of the stored energy onto an output element. The control device generates the command signals phase-offset by an appropriate fraction of the switching period to obtain interleaved operation. In particular, a synchronism stage generates a synchronism signal and a control stage generates the command signals for the converter stages timed by the same synchronism signal.
Abstract:
A control device for a switching regulator having two or more converter stages operating with interleaved operation, each converter stage including an inductive element and a switch element, generates command signals having a switching period for controlling switching of the switch elements, and determining alternation of a storage phase of energy in the respective inductive element and a transfer phase of the stored energy onto an output element. The control device generates the command signals phase-offset by an appropriate fraction of the switching period to obtain interleaved operation. In particular, a synchronism stage generates a synchronism signal and a control stage generates the command signals for the converter stages timed by the same synchronism signal.
Abstract:
A method controls a power factor correction converter that includes a boost inductor and a switch. The method generates a sense signal representing a rectified AC input voltage or an inductor current through the boost inductor, turns on the switch in response to determining, based on the sense signal, a zero current condition through the boost inductor, turns off the switch after an on-time interval, generates a feedback signal based on an output voltage of the converter, and compares the feedback signal with a threshold. If the feedback signal is smaller than the threshold, the method generates a command signal, representing a phase domain including 0 and π, based on the feedback signal and the power threshold, and keeps the switch off when a phase of the input rectified AC voltage or of the inductor current is in the phase domain even if the zero current condition has been determined.
Abstract:
A control circuit controls a switching power factor corrector based on switch off-time modulation by controlling the input electric charge during on-time. The circuit includes a charge current generator that generates charge current as a replica of a current sense signal amplified with a gain corresponding to the square of peak value of a rectified input voltage, a loop capacitor charged with the charge current during on-time intervals and discharged with a discharge current during off-time intervals, a discharge current generator that generates the discharge current proportional to a product of a comparison voltage and a difference between a regulated output voltage and the rectified input voltage, and a PWM modulator that senses a charge voltage of the loop capacitor, turns on the switch for an on-time duration in response to detecting that the charge voltage nullifies, and turns off the switch when the on-time duration has elapsed.
Abstract:
A control circuit controls a switching power factor corrector based on switch off-time modulation by controlling the input electric charge during on-time. The circuit includes a charge current generator that generates charge current as a replica of a current sense signal amplified with a gain corresponding to the square of peak value of a rectified input voltage, a loop capacitor charged with the charge current during on-time intervals and discharged with a discharge current during off-time intervals, a discharge current generator that generates the discharge current proportional to a product of a comparison voltage and a difference between a regulated output voltage and the rectified input voltage, and a PWM modulator that senses a charge voltage of the loop capacitor, turns on the switch for an on-time duration in response to detecting that the charge voltage nullifies, and turns off the switch when the on-time duration has elapsed.
Abstract:
A method controls a power factor correction converter that includes a boost inductor and a switch. The method generates a sense signal representing a rectified AC input voltage or an inductor current through the boost inductor, turns on the switch in response to determining, based on the sense signal, a zero current condition through the boost inductor, turns off the switch after an on-time interval, generates a feedback signal based on an output voltage of the converter, and compares the feedback signal with a threshold. If the feedback signal is smaller than the threshold, the method generates a command signal, representing a phase domain including 0 and π, based on the feedback signal and the power threshold, and keeps the switch off when a phase of the input rectified AC voltage or of the inductor current is in the phase domain even if the zero current condition has been determined.