Abstract:
A method of programming a row of antifuse memory cells includes breaking down at least N antifuse elements in the memory cells. The breakdown includes the application of a breakdown voltage to the anode of each antifuse element. The antifuse elements are broken down sequentially by groups of P antifuse elements, with P being less than N and at least equal to 1. The antifuse elements of a same group simultaneously receive the breakdown voltage. The breakdown of a next group of antifuse elements immediately takes place after the breakdown of a previous group of antifuse elements.
Abstract:
An anti-fuse transistor includes a source, a drain and a well connected together, and a gate. A method for programming the anti-fuse transistor includes applying a reference potential to the gate, and applying a high potential greater than the reference potential to the drain of the anti-fuse transistor. A first access transistor is connected to the anti-fuse transistor. The first access transistor includes a drain connected to the source of the anti-fuse transistor, and a source for receiving the high potential. Applying the high potential to the drain of the anti-fuse transistor includes turning on the first access transistor.