Abstract:
A high pressure nozzle manipulator includes a wheeled chassis, a pair of parallel manipulator elevator rails supported by an elevator rail rotator fastened to the chassis, a horizontal extensible arm rail disposed between and carried by the manipulator elevator rails, a rotary actuator fastened to a distal end of the horizontal extensible arm rail, and a linear actuator fastened between the first rotary actuator and a hinged nozzle support bracket. This bracket holds a high pressure cleaning nozzle. The linear actuator is configured to rotate the nozzle and the bracket through an arc. The elevator rail rotator is configured to rotate the elevator rails through an arc of about 180 degrees about a horizontal axis. The rotary wrist actuator is configured to rotate the hinged nozzle support bracket about a horizontal axis through the extensible arm rail.
Abstract:
A high pressure nozzle manipulator includes a wheeled chassis, a pair of parallel manipulator elevator rails supported by an elevator rail rotator fastened to the chassis, a horizontal extensible arm rail disposed between and carried by the manipulator elevator rails, a rotary actuator fastened to a distal end of the horizontal extensible arm rail, and a linear actuator fastened between the first rotary actuator and a hinged nozzle support bracket. This bracket holds a high pressure cleaning nozzle. The linear actuator is configured to rotate the nozzle and the bracket through an arc. The elevator rail rotator is configured to rotate the elevator rails through an arc of about 180 degrees about a horizontal axis. The rotary wrist actuator is configured to rotate the hinged nozzle support bracket about a horizontal axis through the extensible arm rail.
Abstract:
A rotary nozzle apparatus is disclosed which includes a cup shaped outer housing having a central axis, a wall portion and a bottom portion. A tubular inner housing is centered on the central axis within the outer housing engaging the wall portion of the outer housing. A distal end of an elongated tubular nozzle body carries a nozzle head extending through a passage out of the inner housing to an opening through the bottom portion of the outer housing. The nozzle body is configured to rotate around a conical inner wall portion of the inner housing in response to rotational fluid flow into the inner housing. The angle of the nozzle body with respect to the central axis, and hence fluid spray angle may be adjusted from a wide spray angle to an axial stream by changing spacing between the bottom portion of the outer housing and the inner housing.
Abstract:
A rotary nozzle having a rotating shaft operating within a cylindrical housing is balanced by allowing passage of a small amount of pressurized fluid to be bled to an area between the outside of the opposite end of the shaft and the inside of the housing where the fluid force acts axially in an opposing direction upon the shaft to balance the axial inlet force exerted by the pressurized fluid. The balance of axial forces is self-regulating by controlling escape of the fluid through a tapered or frusto-conical region between the shaft and housing. A plurality of centrifugal weight segments around the inlet end of the shaft are thrust outwardly against the cylindrical housing to retard rotational speed while pressurized fluid around the centrifugal weight segments provides a fluid bearing between the weights and the housing.
Abstract:
A fluid bearing nozzle assembly is disclosed that has a hollow cylindrical body, an inlet nut fastened to the cylindrical body, and a hollow tubular shaft member coaxially carried within the housing body and captured between the inlet nut and the body. The inlet nut has a stem portion extending into a central bore through the shaft member forming an inlet bearing area rotatably carrying the shaft member thereon. The shaft member has a spray head fastened thereto for rotation of the head with the shaft member. An inner wall of the housing body and an outer portion of the shaft have complementary shapes forming a regulating passage therebetween. The shaft has helical grooves that spiral around the shaft to one or both ends to impart rotation to the shaft and spray head.
Abstract:
A fluid bearing nozzle assembly is disclosed that has a hollow cylindrical body, an inlet nut fastened to the cylindrical body, and a hollow tubular shaft member coaxially carried within the housing body and captured between the inlet nut and the body. The inlet nut has a stem portion extending into a central bore through the shaft member forming an inlet bearing area rotatably carrying the shaft member thereon. The shaft member has a spray head fastened thereto for rotation of the head with the shaft member. An inner wall of the housing body and an outer portion of the shaft have complementary shapes forming a regulating passage therebetween. The shaft has helical grooves that spiral around the shaft to one or both ends to impart rotation to the shaft and spray head.
Abstract:
A high pressure rotary nozzle having a rotating shaft operating within a fixed housing wherein the of axial force which acts upon the shaft due to the fluid pressure at the shaft inlet is balanced by allowing passage of a small amount of the pressurized fluid to be bled to an area or chamber between the outside of the opposite end of the shaft and the inside of the housing where the fluid pressure can act axially in an opposing direction upon the shaft to balance the axial inlet force. The balance of axial forces is self-regulating by controlling escape of the fluid through a tapered or frusto-conical region between the shaft and housing. This further provides a fluid bearing between the two surfaces and allows use of interchangeable rotating jet heads having jet orifices which can be oriented in virtually any desirable configuration including axially forward of the nozzle.
Abstract:
A high pressure rotary nozzle having a rotating shaft operating within a fixed housing wherein the of axial force which acts upon the shaft due to the fluid pressure at the shaft inlet is balanced by allowing passage of a small amount of the pressurized fluid to be bled to an area or chamber between the outside of the opposite end of the shaft and the inside of the housing where the fluid pressure can act axially in an opposing direction upon the shaft to balance the axial inlet force. The balance of axial forces is self-regulating by controlling escape of the fluid through a tapered or frusto-conical region between the shaft and housing. This further provides a fluid bearing between the two surfaces and allows use of interchangeable rotating jet heads having jet orifices which can be oriented in virtually any desirable configuration including axially forward of the nozzle.