Abstract:
A rigid mount orbitor sprinkler assembly incorporates a deflector plate configuration that is configured for both spinning/rotating motion as well as orbital or wobbling motion around the center of a spool assembly. The sprinkler incorporates structure to reduce drool that may fall in a concentrated area below the sprinkler and to prevent debris from sandy water or the like from accelerating sprinkler component wear. With reduced vibration, the assembly may be rigidly mounted on a center pivot or other supporting structure while achieving the advantages associated with wobbling and rotating sprinkler assemblies.
Abstract:
A nozzle assembly is provided that includes two sections, the first section may be contoured and the second section may be a converging and diverging section that is downstream from the second section in the direction of gas flow. The contoured section, with a range of bend angles, allows for non-line-of-sight cold spray deposition, thereby providing location-specific control of the cold spray deposition process.
Abstract:
A device (1) for applying fluids that is suitable for mounting as a tool on a robot arm and method therefor. The device (1) comprises a static element (3), a rotatable element (2) and a coupling point (8), wherein the coupling point (8) connects the static element (3) and the rotatable element (2) in such a way that the rotatability of the rotatable element (2) is effected. The coupling point (8) has, both on the side of the static element (3) and on the side of the rotatable element (2), inductive coupling elements (11, 11′) which are arranged in such a way that inductive energy and/or signal transmission is made possible across the coupling point (8).
Abstract:
An object of the present invention is to provide a cold-spray nozzle that can be continuously used for a long time without causing clogging up of the nozzle compared to a conventional case to effectively obtain a high-quality film by a cold-spray method. To achieve the object, the cold-spray nozzle that is a convergent-divergent type cold-spray nozzle comprising a convergent part, a throat part, and a divergent part sequentially arranged in this order for constituting a working gas flow path along a working gas flow direction from an inlet side to an outlet side is employed. The inner peripheral surface of the divergent part has a conical shape and at least a part of the inner peripheral surface is constituted by a glass material.
Abstract:
An orifice for a high-pressure waterjet cutter includes a first surface defining an inlet plane, a second surface defining an outlet plane, and an inner bore aligned along a flow axis and extending from the first surface to the second surface. The orifice also includes a first layer of polycrystalline diamond extending from the first surface to a plane between the inlet plane and the outlet plane, and a second, separate layer of polycrystalline diamond extending from the plane to the second surface. The first layer and the second layer are coupled to one another to define a single component. The second layer has material properties different than the first layer.
Abstract:
A nozzle assembly includes a nozzle body defining an inlet and an opposed spray outlet for producing a spray of fluid supplied at the inlet. The nozzle body includes a radially outward extending retainer feature. An adapter having an adapter bore therethrough is provided for supplying fluid to the inlet of the nozzle body. The nozzle body is engaged within the bore of the adapter. A retainer radially outward of the adapter and nozzle body includes a retainer feature engaged to the retainer feature of the nozzle body to hold the nozzle body and adapter body together. A sleeve is engaged to the retainer radially outward thereof to prevent disengagement of the retainer features of the nozzle body and retainer. The sleeve and retainer are configured for relative movement for releasing the retainer features of the nozzle body and retainer for removal of the nozzle body from the adapter.
Abstract:
Disclosed herein is an apparatus and method of constructing a stationary wear-resistant stationary nozzle 200 and/or nozzle liner 230 for solid fueled furnaces. A transition section 210 is constructed from several flat pieces 211-218 several that may have identical starting shapes. This reduces manufacturing complexity and costs. All pieces 211-218 have a high-wear weld overlay on their inner surface 316, 416. Corner pieces 215-218 are folded into a corner shape at an outlet edge 412 and rolled into a curved shape at an inlet edge 411. Horizontal 211, 212 and vertical pieces 213, 214 are only rolled at an inlet edge 311. The pieces have seam tab 240 along longitudinal edges that are welded together to construct a transition section 210. The transition section 210 may be used as a liner to reduce wear in an existing stationary nozzle or may be constructed to be connected to an inlet piece 220 to form a strong, wear-resistant coal nozzle 200.
Abstract:
Equation (1) for calculating estimated cavitating jet performance E is set, a power index n(σ) of a term xn(σ) relating to a power law of an injection pressure p1 of a cavitating jet and a power index m(σ) of a term ym(σ) relating to a power law of a nozzle diameter d for producing the cavitating jet in Equation (1) are specified from data on the injection pressure p1, the nozzle diameter d and a cavitation number σ and data on cavitating jet performance ERmax corresponding to these pieces of data, and the estimated cavitating jet performance E is obtained using the data on the injection pressure p1, the nozzle diameter d and the cavitation number σ, the Equation (1) and the functions n(σ), m(σ) for the specified power indices.
Abstract:
A honeycomb filter production apparatus includes: a workpiece securing section for securing a base of a honeycomb filter; a powder transfer section for transferring a powder together with an air current by utilizing pressurized gas; an introduction section for introducing the powder that has transferred from the powder transfer section into the base secured by the workpiece securing section when the apparatus is used; a suction section for sucking the gas that has passed through the base secured by the workpiece securing section using suction means; a cleaning section for removing a surplus powder adhering to an end face of the base after the introduction of the powder; a judgment section for judging an amount of the powder adhering to the base; and a workpiece transfer section for transferring the base among the workpiece securing section, the cleaning section, and the judgment section.
Abstract:
An aperture plate is formed from a palladium nickel alloy comprising about 89% palladium and about 11% nickel. There is a generally fine substantially equiaxed grain microstructure throughout the thickness of the aperture plate. The average grain width (W) is in the range of from 0.2 μm to 5.0 μm, in some cases from 0.2 μm to 2.0 μm. Because the grain structure is equiaxed (L/W=1) the grain length (L) is the same as the grain width. The improved aperture plate extends the life of nebulisers, eliminates the risk of premature and unpredictable failure of a nebuliser in service, eliminates the risk of product returns from hospitals and patients, and eliminates the possible risk of fragments of the aperture plate breaking free from the nebulizer.