Abstract:
An electrode material for a lithium-ion secondary battery of the present invention is secondary particles including inorganic particles represented by General Formula LiFexMn1-x-yMyPO4 and a carbonaceous film coating surfaces of the inorganic particles, in which an amount of carbon is 0.5% by mass to 2.5% by mass, a specific surface area is 10 m2/g to 20 m2/g, a first particle diameter (D90(a)) at which a cumulative volume percentage of a particle size distribution of secondary particles is 90% before an ultrasonic treatment is 20 mm to 40 mm, a second particle diameter (D90(b)) at which the cumulative volume percentage of the particle size distribution of the secondary particles is 90% after the ultrasonic treatment is 10 mm to 15 mm, and a ratio (D90(b)/D90(a)) of the second particle diameter (D90(b)) to the first particle diameter (D90(a)) is 0.3 to 0.5.
Abstract:
An electrode material in which an electrode active material having a carbonaceous film formed on the surface is used and which is capable of suppressing a voltage drop when high-speed charge and discharge is carried out in a low-temperature environment is provided.A electrode material, wherein the electrode material have a particulate shape, the electrode material is formed a carbonaceous film on surfaces of electrode active material particles, and the carbonaceous film is constituted randomly stacking graphene layers. Preferably, an inflection ratio of a lithium ion migration path in the carbonaceous film in the electrode material is in a range of 1.1 to 100.
Abstract:
An electrode for a lithium-ion secondary battery including an electrode mixture layer made of a mixture including a first electrode active material including a compound represented by General Formula LiaAbPO4, a second electrode active material including at least one compound selected from the group consisting of compounds represented by LicBdO2, a lithium cobaltate-based compound, a lithium manganate-based compound, and a lithium nickelate-based compound, a conductive auxiliary agent, and a binder, in which a thermal conductivity of the electrode for the lithium-ion secondary battery, which is derived from Expression (1) using a thermal diffusivity, a constant pressure specific heat, and an electrode density of the electrode for a lithium-ion secondary battery, is 0.9 W/(m·K) or more.
Abstract:
An electrode material includes electrode material primary particles including first electrode material primary particles having a particle size in a range of 400 nm to 900 nm, and second electrode material primary particles having a particle size in a range of equal to or greater than 300 nm and less than 400 nm. In a case where the number of the first electrode material primary particles is set as A, and the number of the second electrode material primary particles is set as B when observing a visual field of the electrode material in a range of 3.0 μm×2.4 μm at a magnification of 30,000 times by using a scanning electron microscope, a value of B/A is 3 to 12. A method of manufacturing an electrode material includes mixing two or more kinds of electrode material primary particles having average particle sizes different from each other.
Abstract:
A cathode material for a lithium-ion secondary battery which is made of agglomerated secondary particles formed by agglomeration of a plurality of primary particles of electrode active material particles made of a transition metal lithium phosphate compound having an olivine structure that is coated with a carbonaceous material, in which an arithmetic average roughness Ra of agglomerated secondary particle surfaces observed using a three-dimensional scanning electron microscope is 15 nm or more and 25 nm or less.
Abstract:
An electrode material includes an inorganic particle and a carbonaceous film coating a surface of the inorganic particle, in which an amount of carbon is 0.8 to 2.5% by mass, and volume of micropores in a micropore diameter range of 2 to 200 nm is 3×10−2 to 3×10−1 cm3/g. A method for manufacturing an electrode material includes a step of immersing the inorganic particle in an aqueous solution, a step of producing a slurry including the inorganic particle immersed in an aqueous solution, a carbonaceous film precursor, and water, a step of producing a dried substance of the slurry, and a step of calcinating the dried substance in a non-oxidative atmosphere, in which an amount of the carbonaceous film precursor blended into the inorganic particle is 1.0 to 5.0 parts by mass. A lithium-ion secondary battery includes a cathode that is the electrode; an anode; and a non-aqueous electrolyte.
Abstract:
A lithium-ion secondary battery including a cathode, an anode, and an electrolyte, in which the cathode includes an aluminum current collector and a cathode mixture layer formed on the aluminum current collector, and an interface resistance value between the cathode mixture layer and the aluminum current collector is 1 Ω·cm2 or less.
Abstract:
A cathode material for a lithium-ion secondary battery which is made of agglomerated secondary particles formed by agglomeration of a plurality of primary particles of electrode active material particles made of a transition metal lithium phosphate compound having an olivine structure that is coated with a carbonaceous material, in which an arithmetic average roughness Ra of agglomerated secondary particle surfaces observed using a three-dimensional scanning electron microscope is 3 nm or more and less than 15 nm.
Abstract:
An electrode material for a lithium-ion secondary battery includes an electrode active material made of a transition metal lithium phosphate compound having an olivine structure and a carbonaceous film coating the electrode active material, the specific surface area of the electrode active material is 10 m2/g to 25 m2/g, the average particle diameter of spherical secondary particles formed by granulating the primary particles of the electrode active material is 0.5 μm to 15 μm, and, regarding the content of spherical secondary particles having a circularity of, measured using a flow-type particle image analyzer, of 0.90 to 0.95, the proportion of the number of the spherical secondary particles in the total number of all of single particles and spherical secondary particles present during the measurement of the degree of circularity is 18% or more. In a lithium-ion secondary battery, a cathode includes a cathode mixture layer formed using the electrode material.
Abstract:
An electrode material includes inorganic particles of LiFexMn1-x-yMyPO4 and a carbonaceous film coating surfaces of the inorganic particles, and volume of micropores having micropore diameter of 2 to 10 nm is 3 to 11 cm3/g. A method for manufacturing an electrode material includes immersing the inorganic particles in an aqueous solution having pH of 7.0 to 10.0; producing a slurry including the inorganic particles, a carbonaceous film precursor, and water; producing a dried substance of the slurry by drying the slurry; and calcinating the dried substance in a non-oxidative atmosphere of 500° C. to 1,000° C., and an amount of the carbonaceous film precursor blended into 100 parts by mass of the inorganic particles when converted to a carbon element is 1.0 to 5.0 parts by mass. An electrode includes the electrode material. A lithium-ion secondary battery includes a cathode; an anode; and a non-aqueous electrolyte, the cathode being the electrode.