Abstract:
A top-down substrate printing device for thin film printing is disclosed. In one aspect the device comprises a stage fixing a substrate in a top-down manner, a plurality of nozzles each of which has one end portion positioned below the stage to face the stage and including printing fluid therein, a vertical position controller controlling a distance between the substrate and the nozzles, and a horizontal position controller controlling positions of the substrate and contacts of the nozzles.
Abstract:
A pixel and a display device including the same are disclosed. The pixel includes a light emitting element, first through seventh transistors, and a first capacitor. The first transistor is connected between first and second nodes. The second transistor is connected between a data line and a fourth node and configured to be turned on by a first scan signal. The third transistor is connected between the first node and a third node and configured to be turned on by a second scan signal. The fourth transistor is connected between the fourth node and a third power line and configured to be turned on by a third scan signal. The fifth transistor is connected between the third node and the third power line and configured to be turned on by a fourth scan signal. The sixth transistor is connected between the first node and a fifth node and configured to be turned off by an emission control signal. The seventh transistor is connected between the second node and the second power line and configured to be turned off in response to the emission control signal. The first capacitor is connected between the third and fourth nodes.
Abstract:
A display device includes: a base layer; a circuit layer provided on the base layer, the circuit layer including pixel circuits and sensor circuits; a pixel element layer provided on the circuit layer, the pixel element layer including light emitting elements respectively connected to the pixel circuits and light receiving elements respectively connected to the sensor circuits; an encapsulation layer covering the pixel element layer; and a touch sensing layer on the encapsulation layer, the touch sensing layer including a conductive pattern forming touch electrodes for sensing a touch. The light emitting elements include light emitting layers, and the light receiving elements include light receiving layers. The conductive pattern includes main patterns respectively surrounding the light receiving layers in a closed form.
Abstract:
A display device includes a first display region including a plurality of first pixels connected to first scan lines and first data lines, a second display region at one side of the first display region, the second display region including a plurality of second pixels connected to second scan lines and second data lines, a first scan driver configured to supply a scan signal to the first scan lines, a second scan driver between the second display region and the first scan driver, the second scan driver being configured to supply a scan signal to the second scan lines, and a data driver configured to supply a data signal to the first data lines and the second data lines, wherein some of the first scan lines and the second scan lines are at different layers.
Abstract:
A manufacturing device of an organic light emitting diode display, includes a stage including a temperature controller which heats or cools a region of a substrate on the stage; a discharging unit including a nozzle which provides light-emitting material to the region of the substrate; a beam irradiation unit which irradiates beams to the substrate; and a driving unit which is configured to move the stage or the discharging unit.
Abstract:
A top-down substrate printing device for thin film printing is disclosed. In one aspect the device comprises a stage fixing a substrate in a top-down manner, a plurality of nozzles each of which has one end portion positioned below the stage to face the stage and including printing fluid therein, a vertical position controller controlling a distance between the substrate and the nozzles, and a horizontal position controller controlling positions of the substrate and contacts of the nozzles.
Abstract:
A touch sensing unit includes first touch electrodes and second touch electrodes disposed on in a touch sensor area which includes a round portion having a curvature. A driving line is connected to a first touch electrode among the first touch electrodes are disposed in the round portion of the touch sensor area. A sensing line is connected to a second touch electrode among the second touch electrodes disposed in the round portion of the touch sensor area. The driving line and the sensing line intersect each other.
Abstract:
A display device includes a display panel which includes first and second display areas adjacent to each other, a processor which generates first image data corresponding to the first and second display areas if a display mode is a first mode, and generates second image data corresponding to the first display area if the display mode is a second mode and a display driver which generates a first data signal corresponding to the first image data in the first mode, and converts the second image data and generates a second data signal corresponding to the converted second image data in the second mode. When the display device is driven in the second mode, a gradation image may be displayed on at least a region of the second display area.
Abstract:
Provided herein may be a display device. The display device may include a substrate, a base layer, a first protrusion and a second protrusion. The substrate may include a pixel area, and a peripheral area surrounding the pixel area. The base layer may be disposed on the pixel area, and include a plurality of island patterns on which respective pixels are provided, and a plurality of bridge patterns coupling the adjacent island patterns to each other, the plurality of island patterns and the plurality of bridge patterns disposed on the first area. The first protrusion and the second protrusion may be provided on the base layer.
Abstract:
A display device includes a display panel, a scan driver, and a data driver. The display panel includes a plurality of pixels connected to the scan lines and data lines. The scan driver supplies a scan signal via the scan lines. The data driver supplies data signals via the data lines. At least one scan line of the scan lines is connected to pixels in a plurality of lines, and the pixels connected to the at least one scan line is connected to different data lines. The display panel may be a non-rectangular display panel.