Abstract:
A screen saver controller including a load calculator configured to generate load data of an image represented by input image data, a maximum gray level calculator configured to generate maximum gray level data of the image represented by the input image data, and a screen saver data generator configured to determine a gain of a screen saver mode based on the load data and the maximum gray level data when the screen saver mode is operated and to generate screen saver data based on the input image data and the gain.
Abstract:
A driving controller includes an image analyzer, a grayscale setter and a time-and-space arranger. The image analyzer analyzes input image data to determine a peak luminance. The grayscale setter receives a gamma value and the peak luminance and to determine a boundary grayscale value and a minimum grayscale value. The time-and-space arranger is configured to temporally and spatially arrange first data having the boundary grayscale value and second data having the minimum grayscale value. The driving controller is configured to drive a display panel using the first data and the second data for a low grayscale range of which a grayscale is equal to or less than the boundary grayscale value and to drive the display panel based on a data signal corresponding to a grayscale value of the input image data for a normal grayscale range of which a grayscale is greater than the boundary grayscale value.
Abstract:
A driving controller includes an image analyzer, a grayscale setter and a time-and-space arranger. The image analyzer analyzes input image data to determine a peak luminance. The grayscale setter receives a gamma value and the peak luminance and to determine a boundary grayscale value and a minimum grayscale value. The time-and-space arranger is configured to temporally and spatially arrange first data having the boundary gray scale value and second data having the minimum grayscale value. The driving controller is configured to drive a display panel using the first data and the second data for a low grayscale range of which a grayscale is equal to or less than the boundary grayscale value and to drive the display panel based on a data signal corresponding to a grayscale value of the input image data for a normal grayscale range of which a grayscale is greater than the boundary grayscale value.
Abstract:
A voltage drop compensator for a display device and the display device including the same are disclosed. In one aspect, the voltage drop compensator includes a region divider, an expected current calculator, a conversion matrix generator, a representative voltage calculator, and a compensator. The region divider is configured to divide the display panel into a plurality of regions, and the display panel includes a plurality of power lines and a plurality of pixels configured to receive a power voltage via the power lines. The expected current calculator is configured to calculate an expected current to flow in each of the regions based on input data provided to each of the regions. The conversion matrix generator configured to generate a conversion matrix based on a line resistance of each of the power lines and convert the expected current to a representative voltage provided to the regions based on the conversion matrix.
Abstract:
A display device includes a display panel divided into panel blocks including pixels, and a display panel driver which drives the display panel, sets a time point to which a set time elapses from a time point when input image data is determined to be a still image as an operation time point, decreases a luminance gain from the operation time point, determines the set time based on accumulated deterioration amounts of the panel blocks, and applies the luminance gain to the input image data.
Abstract:
A display apparatus including: a display panel including a plurality of display blocks; and a display panel driver configured to generate a power voltage based on a maximum grayscale value of input image data and a position of a maximum load block among the display blocks and configured to output the power voltage to the display panel, wherein the maximum load block has a largest load of the input image data among the display blocks.
Abstract:
A data transmission circuit includes a transmitter configured to transmit a data signal, a receiver configured to receive the data signal, a first transmission line connected between the transmitter and the receiver, and a second transmission line connected between the transmitter and the receiver. The data signal includes a line start signal, and a configuration signal. The data signal further includes at least one of an inverted line start signal which is an inverted version of the line start signal or an inverted configuration signal which is an inverted version of the configuration signal.
Abstract:
An embodiment of a display apparatus includes a display panel, a driving controller, and a data driver. In operation the driving controller determines a gain reducing area based on an edge load of input image data corresponding to an edge area of the display panel and compensates a grayscale value of the input image data corresponding to the gain reducing area to generate a data signal. The data driver converts the data signal to a data voltage and outputs the data voltage to the display panel.
Abstract:
A display device includes a display panel and a display image shift controller. The display panel includes a display area in which a display image is displayed and a shift area located within the display area. The display image shift controller generates a route shift signal, where a reference point of the display image is shifted in the shift area based on the route shift signal. The route shift signal includes first and second routes corresponding to a path through which the reference point of the display image is shifted. The first route includes a first sub-route and a second sub-route. The second route includes a third sub-route and a fourth sub-route. The first, second, third, and fourth sub-routes are different from each other.
Abstract:
A display device includes a display panel which includes a compensation area, an image processing device, a timing controller which includes an average luminance decrease rate calculator which calculates an average luminance decrease rate, a luminance decrease rate calculator which calculates a luminance decrease rate for the compensation area, and a data compensator which generates output image data by applying the luminance decrease rate for the compensation area to the input image data, and a data driver which provides data voltages generated based on the output image data to the display panel.