Abstract:
A display device includes: a substrate comprising a first layer and a second layer; a first display area including a first pixel area on the substrate; a second display area including a second pixel area and a transparent area adjacent to each other on the substrate; and a blocking layer disposed in the second pixel area of the second display area, and disposed between a first layer and a second layer of the substrate in a side view, and the blocking layer including a metal blocks light.
Abstract:
A display device includes a lower substrate; an upper substrate facing the lower substrate; a display element layer in a display area of the lower substrate and including a thin film transistor; and a sealing body in a peripheral area surrounding the display area, having a closed curve shape, and between the lower substrate and the upper substrate, in which the sealing body includes a first portion and a second portion, the first portion and the second portion respectively extending along different directions from each other, and the first portion and the second portion respectively have different deposition structures from each other.
Abstract:
A liquid crystal display apparatus is disclosed. The liquid crystal display apparatus includes: a plurality of sub-pixels, a first substrate on which at least one first thin film is disposed, a second substrate facing the first substrate and on which at least one second thin film is disposed, a liquid crystal layer disposed between the first substrate and the second substrate, and a spacer unit disposed between the first substrate and the second substrate to maintain a space where the liquid crystal layer is disposed, and continuously formed across at least two sub-pixels from among the plurality of sub-pixels, where the spacer unit includes a contact unit and an isolation unit including a plurality isolation sub-units, where the contact unit is formed to contact the first thin film closest to the liquid crystal layer and the second thin film closest to the liquid crystal layer , where the isolation unit is formed to be spaced apart from the first thin film closest to the liquid crystal layer and to contact the second thin film closest to the liquid crystal layer , and where a distance between the plurality of isolation sub-units and the first thin film closest to the liquid crystal layer is not uniform.
Abstract:
A display device may include a substrate, an organic light emitting layer overlapping the substrate and including an opening, and a holed insulating layer positioned between the substrate and the organic light emitting layer. The holed insulating layer may include a first through hole, a first groove, and a first undercut. A position of the opening may overlap a position of the first groove. The first groove may surround the first through hole in a plan view of the display device. The first undercut may surround the first groove in the plan view of the display device.
Abstract:
A display apparatus includes a first substrate, a second substrate, and a driver chip. The first substrate includes a plurality of gate lines disposed in the display area and extended in a first direction, a plurality of data lines disposed on a gate insulating layer insulating the gate lines and extended in a second direction substantially perpendicular to the first direction, and a gate driving circuit section disposed in the first peripheral area adjacent to first ends of the gate lines. The second substrate is opposite to the first substrate. A liquid crystal is interposed between the first and second substrates. The driver chip is disposed in the second peripheral area adjacent to second ends of the gate lines opposite to the first ends so that the width of the upper and lower portions of the display area may be decreased.
Abstract:
A liquid crystal display apparatus is disclosed. The liquid crystal display apparatus includes: a plurality of sub-pixels, a first substrate on which at least one first thin film is disposed, a second substrate facing the first substrate and on which at least one second thin film is disposed, a liquid crystal layer disposed between the first substrate and the second substrate, and a spacer unit disposed between the first substrate and the second substrate to maintain a space where the liquid crystal layer is disposed, and continuously formed across at least two sub-pixels from among the plurality of sub-pixels, where the spacer unit includes a contact unit and an isolation unit including a plurality isolation sub-units, where the contact unit is formed to contact the first thin film closest to the liquid crystal layer and the second thin film closest to the liquid crystal layer, where the isolation unit is formed to be spaced apart from the first thin film closest to the liquid crystal layer and to contact the second thin film closest to the liquid crystal layer, and where a distance between the plurality of isolation sub-units and the first thin film closest to the liquid crystal layer is not uniform.
Abstract:
A display device may include a substrate, an organic light emitting layer overlapping the substrate and including an opening, and a holed insulating layer positioned between the substrate and the organic light emitting layer. The holed insulating layer may include a first through hole, a first groove, and a first undercut. A position of the opening may overlap a position of the first groove. The first groove may surround the first through hole in a plan view of the display device. The first undercut may surround the first groove in the plan view of the display device.
Abstract:
A display substrate includes a display area corresponding to a plurality of pixels, a peripheral area surrounding the display area, a thin film transistor for driving a corresponding one of the pixels, a gate line electrically coupled to the thin film transistor, a data line crossing the gate line and electrically coupled to the thin film transistor, a pixel electrode electrically coupled to the thin film transistor, and a common electrode overlapping the pixel electrode and having a first opening overlapping a first pixel of the pixels, and a second opening overlapping a second pixel of the pixels adjacent the first pixel, wherein the first opening and the second opening extend in different directions, and wherein the common electrode is continuous and overlaps the first and second pixels.
Abstract:
An organic light emitting display apparatus having improved impact resistance includes a bottom substrate including a display area and a peripheral area surrounding the display area; a plurality of organic light emitting devices arranged in the display area of the bottom substrate; a top substrate corresponding to the bottom substrate; a sealing member, which is arranged in the peripheral area of the bottom substrate and attaches the bottom substrate to the top substrate; and an anti-impact member, which is arranged in the peripheral area of the bottom substrate, is apart from the sealing member, and protrudes from the bottom substrate toward the top substrate.
Abstract:
A display device includes a lower substrate; an upper substrate facing the lower substrate; a display element layer in a display area of the lower substrate and including a thin film transistor; and a sealing body in a peripheral area surrounding the display area, having a closed curve shape, and between the lower substrate and the upper substrate, in which the sealing body includes a first portion and a second portion, the first portion and the second portion respectively extending along different directions from each other, and the first portion and the second portion respectively have different deposition structures from each other.