Abstract:
A manufacturing method of an organic light emitting diode (“OLED”) display includes: forming a contact pattern on a panel region of a surface of a board glass, where the board glass includes the panel region, and a peripheral area which surrounds the panel region; contacting the paper glass with a surface of the contact pattern corresponding to the panel region and the surface of the board glass corresponding to the peripheral area; adhering the surface of the board glass corresponding to the peripheral area to a surface of the paper glass; forming an organic light emitting element on the paper glass corresponding to the panel region; and separating the paper glass from the board glass by cutting the paper glass at a position corresponding to an end portion of the panel region adjacent to the peripheral area.
Abstract:
A manufacturing method of a display device according to some embodiments includes: forming a protrusion pattern on a carrier glass; coating a polymer on the protrusion pattern to form a polymer layer; forming a stacked structure on the polymer layer, including a transistor and an organic light emitting element connected to the transistor; and separating the carrier glass and the protrusion pattern from the polymer layer, wherein an opening penetrating the polymer layer is formed during the separation of the protrusion pattern.
Abstract:
A photosensitive resin composition, an organic light emitting display device, and method for manufacturing an organic light emitting device, the composition including a photosensitive compound; a solvent; and a silsesquioxane-based copolymer, the silsesquioxane-based copolymer being obtained by copolymerizing a compound represented by the following Chemical Formula 1 with at least one of a compound represented by the following Chemical Formula 2, and a compound represented by the following Chemical Formula 3; R1-R2—Si(R3)3 [Chemical Formula 1] R4—Si(R5)3 [Chemical Formula 2] Si(R6)4. [Chemical Formula 3]
Abstract:
An organic light emitting diode display may include a display substrate including an organic light emitting diode, a sealing member facing the display substrate to cover the organic light emitting diode, a sealant positioned between the display substrate and the sealing member and bonding the display substrate and the sealing member, and a reinforcing member positioned at an outer surface of the sealant and a space between the display substrate and the sealing member, in which shear stress and hardness of the reinforcing member are a function of a sum of thicknesses of the display substrate and the sealing member.