Abstract:
An organic light emitting display device and a manufacturing method thereof are disclosed. In one aspect, the device includes a substrate, a first electrode formed over the substrate, an emission layer formed on the first electrode and a second electrode formed on the emission layer. The device also includes an encapsulation layer formed on the second electrode and a lens layer comprising a plurality of lenses formed in the encapsulation layer.
Abstract:
Embodiments may disclose an organic light-emitting display device including a first substrate including a pixel area emitting light in a first direction, and a transmittance area that is adjacent to the pixel area and transmits external light; a second substrate facing the first substrate and encapsulating a pixel on the first substrate; an optical pattern array on the first substrate or the second substrate to correspond to the transmittance area, the optical pattern array being configured to transmit or block external light depending on the transmittance area according to a coded pattern; and a sensor array corresponding to the optical pattern array, the sensor array being arranged in a second direction that is opposite to the first direction in which the light is emitted, the second array receiving the external light passing through the optical pattern array.
Abstract:
An electronic imaging device includes a display unit and a barrier layer. The display unit includes scan lines for transferring select signals, data lines for transferring data signals corresponding to first and second images formed according to one or more input signals, and pixels connected with the scan and data lines. The barrier layer includes first barriers and second barriers corresponding to the first barriers. The first image is displayed during a first period of a unit period during which an image of a single frame is displayed. The second image is displayed during a second period different from the first period. The first barriers are driven according to the first image, the second barriers are driven according to the second image, and a region of the barrier layer corresponding to a mixed region in which the first and second images coexist is a non-transmission region.
Abstract:
An image sensing unit is disclosed. In one aspect, the sensing unit includes optical sensors for acquiring a two dimensional (2D) image from a subject and micro-structures for supporting the optical sensors and adjusting the heights of the optical sensors.
Abstract:
An image sensing unit is disclosed. In one aspect, the sensing unit includes optical sensors for acquiring a two dimensional (2D) image from a subject and micro-structures for supporting the optical sensors and adjusting the heights of the optical sensors.
Abstract:
An electronic imaging device includes a display unit and a barrier layer. The display unit includes scan lines for transferring select signals, data lines for transferring data signals corresponding to first and second images formed according to one or more input signals, and pixels connected with the scan and data lines. The barrier layer includes first barriers and second barriers corresponding to the first barriers. The first image is displayed during a first period of a unit period during which an image of a single frame is displayed. The second image is displayed during a second period different from the first period. The first barriers are driven according to the first image, the second barriers are driven according to the second image, and a region of the barrier layer corresponding to a mixed region in which the first and second images coexist is a non-transmission region.