Abstract:
Accordingly, an embodiment of the present invention provides a touch screen panel including: sensing patterns in a display region of a transparent base; and sensing lines in a non-display region positioned at an outer side of the display region and coupled to the sensing patterns. Here, the sensing patterns include: a plurality of first sensing cells in a plurality of first lines in a first direction; first connecting lines coupling the first sensing cells in corresponding first lines to each other; second sensing cells in a plurality of second lines in a second direction; and second connecting lines coupling the second sensing cells in corresponding second lines to each other, and the first sensing cells and the second sensing cells each have a stacked structure, and the first connecting lines are integral with an upper layer of the first sensing cells.
Abstract:
A flexible touch screen panel in which metal wire sensing patterns are formed as a touch sensor on a first surface of a flexible thin film is provided. The flexible touch screen panel includes a thin film divided into an active area and a non-active area adjacent to the active area, sensing patterns in the active area on a first surface of the thin film, and sensing lines in the non-active area on the first surface of the thin film and connected to the sensing patterns. The sensing patterns include nanowire.
Abstract:
A flexible touch screen panel includes a thin film substrate divided into an active area and a non active area positioned at the outside of the active area; sensing patterns formed on the active area of a first surface of the thin film substrate, including first sensing cells formed to be connected along a first direction and second sensing cells formed to be connected along a second direction; and sensing lines formed on the non active area of the first surface of the thin film substrate. The sensing lines are connected to the sensing patterns. In the touch screen panel, the area and/or interval of the sensing cells formed on a first region, which is capable of being bent by predetermined curvature about a folding axis is different from the area and/or interval of the sensing cells formed on a second region as a flat region except the first region.
Abstract:
A flexible touch screen panel includes a thin film substrate divided into an active area and a non active area positioned at the outside of the active area; sensing patterns formed on the active area of a first surface of the thin film substrate, including first sensing cells formed to be connected along a first direction and second sensing cells formed to be connected along a second direction; and sensing lines formed on the non active area of the first surface of the thin film substrate. The sensing lines are connected to the sensing patterns. In the touch screen panel, the area and/or interval of the sensing cells formed on a first region, which is capable of being bent by predetermined curvature about a folding axis is different from the area and/or interval of the sensing cells formed on a second region as a flat region except the first region.
Abstract:
A flexible touch screen panel includes a thin film substrate divided into an active area and a non active area positioned at the outside of the active area; sensing patterns formed on the active area of a first surface of the thin film substrate, including first sensing cells formed to be connected along a first direction and second sensing cells formed to be connected along a second direction; and sensing lines formed on the non active area of the first surface of the thin film substrate. The sensing lines are connected to the sensing patterns. In the touch screen panel, the area and/or interval of the sensing cells formed on a first region, which is capable of being bent by predetermined curvature about a folding axis is different from the area and/or interval of the sensing cells formed on a second region as a flat region except the first region.
Abstract:
A flexible touch screen panel includes a flexible film, and a wiring layer in the flexible film, wherein the wiring layer is at a neutral plane within the flexible film, the neutral plane being a region where substantially no stress is applied when the flexible touch screen panel is bent.
Abstract:
A flexible touch screen panel in which metal wire sensing patterns are formed as a touch sensor on a first surface of a flexible thin film is provided. The flexible touch screen panel includes a thin film divided into an active area and a non-active area adjacent to the active area, sensing patterns in the active area on a first surface of the thin film, and sensing lines in the non-active area on the first surface of the thin film and connected to the sensing patterns. The sensing patterns include nanowire.
Abstract:
A touch screen panel includes a plurality of first sensing electrodes on a substrate, the plurality of first sensing electrodes being connected to each other in a first direction, a plurality of second sensing electrodes between the first sensing electrodes on the substrate, the plurality of second sensing electrodes being connected to each other in a second direction intersecting the first direction, a plurality of first connecting patterns connecting the first sensing electrodes to each other in the first direction, a plurality of second connecting patterns connecting the second sensing electrodes to each other in the second direction, a first insulating layer at least between the first connecting patterns and the second connecting patterns, and dummy patterns in at least one of the first and second sensing electrodes, the dummy patterns having island-shapes and being insulated from the first and second sensing electrodes.
Abstract:
A flexible touch screen panel includes a thin film substrate divided into an active area and a non active area positioned at the outside of the active area; sensing patterns formed on the active area of a first surface of the thin film substrate, including first sensing cells formed to be connected along a first direction and second sensing cells formed to be connected along a second direction; and sensing lines formed on the non active area of the first surface of the thin film substrate. The sensing lines are connected to the sensing patterns. In the touch screen panel, the area and/or interval of the sensing cells formed on a first region, which is capable of being bent by predetermined curvature about a folding axis is different from the area and/or interval of the sensing cells formed on a second region as a flat region except the first region.
Abstract:
A flexible touch screen panel includes a thin film substrate divided into an active area and a non active area positioned at the outside of the active area; sensing patterns formed on the active area of a first surface of the thin film substrate, including first sensing cells formed to be connected along a first direction and second sensing cells formed to be connected along a second direction; and sensing lines formed on the non active area of the first surface of the thin film substrate. The sensing lines are connected to the sensing patterns. In the touch screen panel, the area and/or interval of the sensing cells formed on a first region, which is capable of being bent by predetermined curvature about a folding axis is different from the area and/or interval of the sensing cells formed on a second region as a flat region except the first region.