Abstract:
A display device includes a base layer, and a pixel layer disposed on the base layer. The pixel layer includes reference pixel units and photo-sensing elements. Each of the reference pixel units includes a first light-emitting element, a second light-emitting element, and a third light-emitting element. Each of the photo-sensing elements is interposed between two second light-emitting elements adjacent to each other in a first direction, and at least one of the first light-emitting element or the third light-emitting element includes a plurality of sub-light-emitting elements electrically connected to each other.
Abstract:
Provided is a display device including a display panel having a plurality of pixel regions, a first insulating layer on the display panel, having a first refractive index, and having a plurality of first openings defined in regions which overlap the plurality of pixel regions, a second insulating layer directly on the first insulating layer and having a plurality of second openings defined in regions which correspond to the plurality of first openings, and a third insulating layer covering the display panel, the first insulating layer, and the second insulating layer and having a second refractive index higher than the first refractive index, wherein the third insulating layer may overlap the plurality of pixel regions on a plane.
Abstract:
A display device may include a display panel including a pixel region and an input sensing sensor, wherein the input sensing sensor includes a first conductive layer disposed on the display panel, a first insulation layer disposed on the first conductive layer and having a first opening in a region overlapping the pixel region, a second conductive layer disposed on the first insulation layer, a second insulation layer disposed on the second conductive layer and having a second opening defined in a region overlapping the pixel region, and a third insulation layer disposed on the second insulation layer and filled in the first opening and the second opening.
Abstract:
A display device includes a sensor having a detection electrode. An optical pattern layer is disposed directly on the sensor and includes a plurality of transmission portions and a light blocking portion. A display panel is disposed on the optical pattern layer. A minimum distance between the detection electrode and the light blocking portion is in a range of 1 micrometer-5 micrometers.
Abstract:
An organic light-emitting display apparatus including a substrate; an insulating layer disposed on the substrate; a first pixel electrode disposed on the insulating layer and including a reflecting layer; a pixel defining layer disposed around one end of the first pixel electrode and extending away from the first pixel electrode; a first intermediate layer disposed on the first pixel electrode and including an organic emission layer; an opposite electrode disposed on the first intermediate layer and the pixel defining layer and including a reflecting layer; and a first refractive layer disposed between the insulating layer and the pixel defining layer and having a refractivity greater than that of the insulating layer and the pixel defining layer. A first end of the first refractive layer is disposed to contact the first intermediate layer, and a second end of the refractive layer is disposed to face a portion of the opposite electrode.
Abstract:
Provided is a display device including a display panel having a plurality of pixel regions, a first insulating layer on the display panel, having a first refractive index, and having a plurality of first openings defined in regions which overlap the plurality of pixel regions, a second insulating layer directly on the first insulating layer and having a plurality of second openings defined in regions which correspond to the plurality of first openings, and a third insulating layer covering the display panel, the first insulating layer, and the second insulating layer and having a second refractive index higher than the first refractive index, wherein the third insulating layer may overlap the plurality of pixel regions on a plane.
Abstract:
An organic light emitting display includes a thin film transistor substrate, and an organic light emitting device on the thin film transistor substrate, the organic light emitting device including a first electrode on the thin film transistor substrate, the first electrode being configured to reflect light, an organic layer on the first electrode and including at least an emitting layer, a transflective second electrode on the organic layer, and a color filter between the first electrode and the transflective second electrode.
Abstract:
Disclosed is a display device including a display module, and a sensor layer below the display module for detecting light reflected from the display module, and including a base layer, a sensing layer on the base layer and including a sensing element that detects the light, and an optical pattern layer between the sensing layer and the display module, and including a light-shield section defining openings arranged at intervals when viewed in a plan view, and transmission sections respectively located in the openings.
Abstract:
A method for controlling optical quantities of an organic light emitting diode (“OLED”) display includes generating an inverse matrix using an initial setting of the OLED display, calculating a variation between the initial setting and a target setting using the target setting, the initial setting and the inverse matrix, where the target setting is input by a user of the OLED, and controlling optical quantities of the OLED display using the variation.
Abstract:
Provided is a display device including a display panel having a plurality of pixel regions, a first insulating layer on the display panel, having a first refractive index, and having a plurality of first openings defined in regions which overlap the plurality of pixel regions, a second insulating layer directly on the first insulating layer and having a plurality of second openings defined in regions which correspond to the plurality of first openings, and a third insulating layer covering the display panel, the first insulating layer, and the second insulating layer and having a second refractive index higher than the first refractive index, wherein the third insulating layer may overlap the plurality of pixel regions on a plane.