Abstract:
An authenticating system includes an authenticating device, a background display device, a sensing device, and an authentication pattern checking device. The authenticating device displays a first display pattern on a transparent display panel including a transmissivity pattern. The transmissivity pattern includes a plurality of regions with different transmissivities. The background display device displays a second display pattern on a display panel to overlap the transparent display panel. The sensing device generates a sensing pattern by sensing an authentication pattern generated based on the transmissivity pattern, the first display pattern, and the second display pattern. The authentication pattern checking device performs authentication by checking whether the sensing pattern is consistent with an authentication reference pattern.
Abstract:
An electroluminescent display and a method of driving the same are disclosed. In one aspect, the display includes a display panel including a plurality of pixels configured to operate based on a first power supply voltage having a negative voltage level. The display panel is configured to generate at least one feedback voltage corresponding to an ohmic drop of the first power supply voltage. An analog-to-digital converter is configured to generate at least one digital feedback signal based on the at least one feedback voltage. An adaptive voltage controller is configured to generate a voltage control signal based on input image data, the at least one digital feedback signal, a distribution of the input image data and the ohmic drop of the first power supply voltage. A voltage converter is configured to generate the first power supply voltage based on an input voltage and the voltage control signal.
Abstract:
Provided are a device and method for polishing a substrate, in which an upper ground surface, a side surface and a lower ground surface of a substrate can be simultaneously polished, and a polishing wheel can be evenly used on the whole so as to be uniformly abraded. A substrate polishing system is to polish a substrate, of which upper edge and a lower edge are polished, and includes: a table, on which the substrate is secured; a spindle provided at the upper portion of a side surface of the table; a polishing wheel formed in the shape of a cylinder and having a rotating shaft mounted perpendicularly to the substrate, so as to polish the substrate with a side surface thereof while rotating by the spindle; and a Z axis movement means for moving the polishing wheel in the vertical direction during the polishing of the substrate.
Abstract:
An electroluminescent display and a method of driving the same are disclosed. In one aspect, the display includes a display panel including a plurality of pixels configured to operate based on a first power supply voltage having a negative voltage level. The display panel is configured to generate at least one feedback voltage corresponding to an ohmic drop of the first power supply voltage. An analog-to-digital converter is configured to generate at least one digital feedback signal based on the at least one feedback voltage. An adaptive voltage controller is configured to generate a voltage control signal based on input image data, the at least one digital feedback signal, a distribution of the input image data and the ohmic drop of the first power supply voltage. A voltage converter is configured to generate the first power supply voltage based on an input voltage and the voltage control signal.