Abstract:
A display device includes a substrate, a switching transistor and a driving transistor positioned on the substrate, a first electrode connected to the driving transistor, a second electrode positioned on the first electrode, and a pixel definition layer positioned between the first electrode and the second electrode, where the pixel definition layer includes a first portion, and a second portion having a thickness less than that of the first portion, where a pixel opening defined in the pixel definition layer is enclosed by the first portion, and the second portion overlaps the first electrode and the second electrode.
Abstract:
A display device and a method of manufacturing the same are provided. A display device includes: a display panel including a first area, a second area, and a bending area between the first area and the second area; a first polarizing film on a first surface of the first area of the display panel; and a second polarizing film on a first surface of the second area of the display panel, and the first and second polarizing films are spaced apart from each other with the bending area therebetween.
Abstract:
An organic light emitting diode display includes a substrate, a first electrode, a second electrode, an organic emission layer positioned between the first electrode and the second electrode, a driving voltage line, a dummy electrode. The dummy electrode is positioned at the same layer as the first electrode.
Abstract:
A touch sensor includes: a plurality of sensor pixels; a sensor scan driver for supplying sensor scan signals to the sensor pixels through sensor scan lines; a power supply unit for supplying common voltages to the sensor pixels through common lines; and a read-out circuit connected to the sensor pixels through the common lines, the read-out circuit configured to sense a touch by using an output signal output through the common lines, wherein two sensor pixels adjacent to each other among the sensor pixels share one common line.
Abstract:
A pattern structure for a display device includes a substrate, a protrusion pattern on the substrate, a first conductive pattern covering an upper surface of the protrusion pattern, an interlayer insulating layer on the first conductive pattern and including a contact hole, and a second conductive pattern on the interlayer insulating layer and connected to the first conductive pattern. The contact hole overlaps the protrusion pattern and the first conductive pattern.
Abstract:
An organic light-emitting diode display is disclosed. In one aspect, a semiconductor layer is on a substrate, and the semiconductor layer is non-linear. A gate metal line is on the semiconductor layer, and an insulating layer covering the semiconductor layer and the gate metal line and having a plurality of contact holes connected to the semiconductor layer. A data metal line is on the insulating layer and electrically connected to the semiconductor layer via a selected one of the contact holes. An OLED is electrically connected to the gate metal line and the data metal line, and the semiconductor layer includes a narrow semiconductor layer having a first width and an expansion semiconductor layer formed adjacent to the selected contact hole and having a second width greater than the first width.
Abstract:
A display device includes a substrate, a switching transistor and a driving transistor positioned on the substrate, a first electrode connected to the driving transistor, a second electrode positioned on the first electrode, and a pixel definition layer positioned between the first electrode and the second electrode, where the pixel definition layer includes a first portion, and a second portion having a thickness less than that of the first portion, where a pixel opening defined in the pixel definition layer is enclosed by the first portion, and the second portion overlaps the first electrode and the second electrode.
Abstract:
A thin film transistor array panel includes a substrate, a gate electrode on the substrate, a gate insulating layer on the gate electrode, a semiconductor layer on the gate insulating layer, a source electrode and a drain electrode on the semiconductor layer and facing each other, a floating metal layer between the source electrode and the drain electrode, and a passivation layer covering the source electrode, the drain electrode, and the floating metal layer. The floating metal layer is electrically floating.