Abstract:
A liquid crystal display device includes a first substrate including a pixel area and a light shielding area, a second substrate opposing the first substrate, a liquid crystal layer between the first and second substrates, the liquid crystal layer including a liquid crystal molecule, a pixel electrode disposed on the first substrate corresponding to the pixel area, the pixel electrode including at least one unit pixel electrode, a light shielding member disposed on the first substrate corresponding to the light shielding area, and a projection on the first substrate, the projection overlapping a portion of the unit pixel electrode, wherein the projection is spaced apart from the light shielding member.
Abstract:
A liquid crystal display device includes: a first substrate; a second substrate positioned parallel to the first substrate; a liquid crystal layer between the first substrate and the second substrate. A black matrix disposed on one of the first substrate and the second substrate and configured to define a pixel region. A lower pixel electrode on the first substrate corresponding to the pixel region. An upper insulating layer disposed on the lower pixel electrode and having at least one groove. An upper pixel electrode disposed on the upper insulating layer and receiving a data signal from a thin film transistor, the data signal applied from a data line.
Abstract:
A display apparatus includes pixels. Each pixel includes a first pixel electrode, a second pixel electrode, a black matrix, a shielding electrode, and first and second sub-shielding electrodes. The first pixel electrode is disposed in a first pixel area. The second pixel electrode is disposed in a second pixel area. The black matrix is disposed in a predetermined area of a first boundary area between the first pixel area and the second pixel area. The shielding electrode is disposed between first pixel areas and between second pixel areas, which are arranged in a first direction, and extends in a second direction crossing the first direction. The first and second sub-shielding electrodes branch from the shielding electrode along the first direction and are spaced apart from each other in the first boundary area while the black matrix is disposed therebetween.
Abstract:
A display panel includes a first substrate, a second substrate, and a liquid crystal layer disposed between the first and second substrates. The first substrate includes a recess portion recessed into the first substrate from the surface of a common electrode and a first alignment barrier protruded from the recess portion in an area corresponding to at least a portion of an end portion of a first alignment layer.
Abstract:
Provided is a display device including: a first substrate including a display area, and a non-display area surrounding the display area; a second substrate disposed on the first substrate, and facing the first substrate; a first color filter disposed between the first substrate and the second substrate, and including a first opening exposing the second substrate in the non-display area; and a refractive layer disposed between the first substrate and the first color filter to overlap the display area and the non-display area and to fill the first opening in the non-display area.
Abstract:
A display panel includes a base substrate, a driving circuit, and a roof layer defining a cavity. A color filter is disposed on the base substrate to at least partially cover the driving circuit. The color filter is disposed at least on a pixel area and includes a depression positioned at least partially within a circuit area. A black matrix is disposed upon the depression of the color filter. The black matrix being upon the depression allows an inlet portion of the cavity to remain greater than a certain cross-sectional area.