Abstract:
An organic light-emitting diode (OLED) display and a method of manufacturing an OLED display are disclosed. In one aspect, the method includes forming a data electrode layer and patterning the data electrode layer so as to form a source electrode, a drain electrode, and a pad electrode. The method can also include forming a first organic insulating layer over the source, drain and pad electrodes and forming a via hole corresponding to the source electrode or the drain electrode in the first organic insulating layer via a one tone mask. The method can further include forming an OLED including an anode electrically connected to the source electrode or the drain electrode, an organic emission layer, and a cathode, and etching a first portion of the first organic insulating layer formed over the pad electrode and a second portion of the organic emission layer formed over the pad electrode.
Abstract:
An organic light emitting display device comprises a common voltage line formed over a peripheral region of a substrate; a passivation layer formed over a pixel region of the substrate and the peripheral region; pixel electrodes formed over the pixel region; and a pixel defining layer formed over the pixel region and the peripheral region. The pixel defining layer defines pixel openings overlapping the pixel electrodes, respectively. The device further comprises organic light emitting layers formed over the pixel region, and disposed in the pixel openings and over the pixel electrodes, respectively; and a common electrode formed over the pixel and peripheral regions. The common electrode is disposed over the pixel defining layer and the organic light emitting layers. The common electrode contacts the common voltage line. The passivation layer comprises a portion overlapping the common voltage line but not overlapping the pixel defining layer.
Abstract:
An organic light emitting display device comprises a common voltage line formed over a peripheral region of a substrate; a passivation layer formed over a pixel region of the substrate and the peripheral region; pixel electrodes formed over the pixel region; and a pixel defining layer formed over the pixel region and the peripheral region. The pixel defining layer defines pixel openings overlapping the pixel electrodes, respectively. The device further comprises organic light emitting layers formed over the pixel region, and disposed in the pixel openings and over the pixel electrodes, respectively; and a common electrode formed over the pixel and peripheral regions. The common electrode is disposed over the pixel defining layer and the organic light emitting layers. The common electrode contacts the common voltage line. The passivation layer comprises a portion overlapping the common voltage line but not overlapping the pixel defining layer.
Abstract:
A display device includes a pixel array disposed in a display area, a connection pad disposed in a pad area, and a transfer wiring electrically connected to the connection pad to transfer a signal to the pixel array. The pixel array includes a light-emitting element including a first electrode including a multi-layered structure including a metal layer and a metal oxide layer, an organic light-emitting layer disposed on the first electrode, and a second electrode disposed on the organic light-emitting layer. The connection pad includes an upper pad conductive layer having a single-layered structure including a metal oxide.
Abstract:
An organic light-emitting diode (OLED) display and a method of manufacturing an OLED display are disclosed. In one aspect, the method includes forming a data electrode layer and patterning the data electrode layer so as to form a source electrode, a drain electrode, and a pad electrode. The method can also include forming a first organic insulating layer over the source, drain and pad electrodes and forming a via hole corresponding to the source electrode or the drain electrode in the first organic insulating layer via a one tone mask. The method can further include forming an OLED including an anode electrically connected to the source electrode or the drain electrode, an organic emission layer, and a cathode, and etching a first portion of the first organic insulating layer formed over the pad electrode and a second portion of the organic emission layer formed over the pad electrode.
Abstract:
An organic light emitting display device comprises a common voltage line formed over a peripheral region of a substrate; a passivation layer formed over a pixel region of the substrate and the peripheral region; pixel electrodes formed over the pixel region; and a pixel defining layer formed over the pixel region and the peripheral region. The pixel defining layer defines pixel openings overlapping the pixel electrodes, respectively. The device further comprises organic light emitting layers formed over the pixel region, and disposed in the pixel openings and over the pixel electrodes, respectively; and a common electrode formed over the pixel and peripheral regions. The common electrode is disposed over the pixel defining layer and the organic light emitting layers. The common electrode contacts the common voltage line. The passivation layer comprises a portion overlapping the common voltage line but not overlapping the pixel defining layer.
Abstract:
An OLED display device includes a driving semiconductor layer on a substrate, a gate insulating layer covering the driving semiconductor layer, a driving gate electrode and etching preventing layer on the gate insulating layer, a passivation layer on the gate insulating layer, driving gate electrode, and etching preventing layer, and including a plurality of protruding and depressed patterns, driving source and drain electrodes on the passivation layer, a pixel electrode on the protruding and depressed pattern, and exposed etching preventing layer, the pixel electrode having a protruding and depressed shape, a pixel definition layer on the passivation layer, and the driving source and drain electrodes, and having a pixel opening exposing the pixel electrode, an organic emission layer on the exposed pixel electrode, and a common electrode on the organic emission layer and pixel definition layer. The protruding and depressed pattern partially exposes the etching preventing layer.
Abstract:
A thin film transistor includesa gate electrode including a gate pattern positioned on a substrate and a gate clad pattern covering the gate pattern. An oxide semiconductor layer is positioned on the gate electrode. A source electrode and a drain electrode are positioned on the oxide semiconductor layer. The source electrode and the drain electrode are ach in contact with end portions of the oxide semiconductor layer.