Abstract:
An organic light-emitting diode includes a first electrode and a second electrode facing the first electrode; an emission layer between the first electrode and the second electrode; a hole transport layer between the first electrode and the emission layer and includes a first hole transport layer, a second hole transport layer, and a buffer layer between the first hole transport layer and the second hole transport layer; and an electron transport layer between the emission layer and the second electrode, wherein the buffer layer and the electron transport layer each include a mixture of an electron-transporting organometallic compound and an electron-transporting organic compound.
Abstract:
An organic light emitting display device may include a substrate, an anode, an auxiliary electrode, a light emitting structure, a lower cathode, and an upper cathode. The substrate may include a pixel region, a transparent region, and a boundary region between the pixel region and the transparent region. The anode may be on the pixel region. The auxiliary electrode may be on the transparent or boundary regions. The light emitting structure may be on the anode and the auxiliary electrode and extended from the pixel region to the transparent region. The lower cathode may be on the light emitting structure and made thin to increase transmittance. The upper cathode may be on the lower cathode. The thin lower cathode may be electrically connected to the auxiliary electrode via a contact hole which penetrates the light emitting structure so as to reduce a voltage drop.
Abstract:
An organic layer deposition apparatus includes a conveyer unit and a deposition unit that has one or more organic layer deposition assemblies configured to deposit an organic layer on a moving substrate. The conveyer unit includes a moving unit configured to move a substrate fixed thereto, a first conveyer unit configured to move the moving unit in a first direction during which an organic material is deposited on the substrate fixed to the moving unit, and a second conveyer unit configured to move the moving unit in a second direction opposite to the first direction after deposition is completed and the substrate is separated from the moving unit. The first conveyer unit and the second conveyer unit are configured to move through the deposition unit.
Abstract:
An organic light emitting display device may include a substrate, an anode, an auxiliary electrode, a light emitting structure, a lower cathode, and an upper cathode. The substrate may include a pixel region, a transparent region, and a boundary region between the pixel region and the transparent region. The anode may be on the pixel region. The auxiliary electrode may be on the transparent or boundary regions. The light emitting structure may be on the anode and the auxiliary electrode and extended from the pixel region to the transparent region. The lower cathode may be on the light emitting structure and made thin to increase transmittance. The upper cathode may be on the lower cathode. The thin lower cathode may be electrically connected to the auxiliary electrode via a contact hole which penetrates the light emitting structure so as to reduce a voltage drop.
Abstract:
An organic light emitting display device may include a substrate, an anode, an auxiliary electrode, a light emitting structure, a lower cathode, and an upper cathode. The substrate may include a pixel region, a transparent region, and a boundary region between the pixel region and the transparent region. The anode may be on the pixel region. The auxiliary electrode may be on the transparent or boundary regions. The light emitting structure may be on the anode and the auxiliary electrode and extended from the pixel region to the transparent region. The lower cathode may be on the light emitting structure and made thin to increase transmittance. The upper cathode may be on the lower cathode. The thin lower cathode may be electrically connected to the auxiliary electrode via a contact hole which penetrates the light emitting structure so as to reduce a voltage drop.
Abstract:
An organic light-emitting diode includes a first electrode and a second electrode facing the first electrode; an emission layer between the first electrode and the second electrode; a hole transport layer between the first electrode and the emission layer and includes a first hole transport layer, a second hole transport layer, and a buffer layer between the first hole transport layer and the second hole transport layer; and an electron transport layer between the emission layer and the second electrode, wherein the buffer layer and the electron transport layer each include a mixture of an electron-transporting organometallic compound and an electron-transporting organic compound.