Abstract:
A display panel includes a plurality of pixels including a first type pixel, a second type pixel, and a third type pixel, and a lens array disposed on a first surface of the display panel and having an inclination angle. The first type pixel and the second type pixel are disposed adjacent to each other in a second direction. The third type pixel is disposed adjacent to the first type pixel and the second type pixel in a first direction. A pitch of the third type pixel in the second direction is less than or equal to a sum of a pitch of the first type pixel in the second direction and a pitch of the second type pixel in the second direction.
Abstract:
A display apparatus includes: a display panel to display a first image having a first image spectrum corresponding to a first animal spectral sensitivity curve of a first cone cell of an animal, and to display a second image having a second image spectrum corresponding to a second animal spectral sensitivity curve of a second cone cell of the animal, in response to output image data. At least one of the first and second animal spectral sensitivity curves is different from first, second, and third human spectral sensitivity curves of cone cells of a human that perceives red, green, and blue colors.
Abstract:
A display apparatus includes: a display panel to display a first image having a first image spectrum corresponding to a first animal spectral sensitivity curve of a first cone cell of an animal, and to display a second image having a second image spectrum corresponding to a second animal spectral sensitivity curve of a second cone cell of the animal, in response to output image data. At least one of the first and second animal spectral sensitivity curves is different from first, second, and third human spectral sensitivity curves of cone cells of a human that perceives red, green, and blue colors.
Abstract:
A display device is disclosed. In one aspect, the display device includes an image source configured to generate image data comprising red, green, and blue data and a color-weakness determiner configured to generate color vision deficiency data comprising color-weakness information. The device also includes a color-weakness compensator configured to generate compensation data based on the image data and the color vision deficiency data and a display portion comprising a plurality of pixels each configured to emit light based on the compensation data. Each of the pixels includes first and second sub-pixels configured to emit light having a light-emitting color based on an electric field applied to the first or second sub-pixel and a third sub-pixel configured to emit light having a predetermined light-emitting color.
Abstract:
A device including a stretchable display and a method of controlling the device are disclosed. In one aspect, the device includes a stretchable display including a display unit formed on a front side of the stretchable display and configured to display images in a display area. The device also includes a support attached to a rear surface of the stretchable display and including a battery and a controller. The device further includes a sensor formed on the support. The support further includes a folding portion along which the support and stretchable display are configured to be folded and a bending portion along which the support and stretchable display are configured to be bent. The sensor is formed at a position corresponding to the folding portion or the bending portion and the sensor is configured to sense when the device is bent or folded.
Abstract:
An electronic device includes a display configured to display a three-dimensional image, a camera configured to photograph a real image, and a controller configured to generate an image signal based on the real image and augmented reality (AR) image data and to provide the image signal to the display, the controller including a multi-view image generator configured to convert the AR image data into multi-view AR images, a graphics processor configured to compose each of the multi-view AR images with the real image to generate multi-view composition images, and a processor configured to control a multi-view virtual camera and the graphics processor, to convert the multi-view composition images into the image signal, and to provide the image signal to the display.
Abstract:
A display device is disclosed. In one aspect, the display device includes an image source configured to generate image data comprising red, green, and blue data and a color-weakness determiner configured to generate color vision deficiency data comprising color-weakness information. The device also includes a color-weakness compensator configured to generate compensation data based on the image data and the color vision deficiency data and a display portion comprising a plurality of pixels each configured to emit light based on the compensation data. Each of the pixels includes first and second sub-pixels configured to emit light having a light-emitting color based on an electric field applied to the first or second sub-pixel and a third sub-pixel configured to emit light having a predetermined light-emitting color.
Abstract:
A display control method for controlling display of a display panel, the display control method including: obtaining an image by photographing a viewer; determining whether the viewer is sleepy based on the image; controlling a display mode of the display panel based on whether the viewer is sleepy; and generating an output signal for displaying an image on the display panel based on the display mode, wherein the display panel includes a first blue pixel emitting a first blue light and a second blue pixel emitting a second blue light having a different wavelength from the first blue light, and the display mode is classified based on which of the first and second blue pixels are used.
Abstract:
A display panel includes a plurality of pixels including a first type pixel, a second type pixel, and a third type pixel, and a lens array disposed on a first surface of the display panel and having an inclination angle. The first type pixel and the second type pixel are disposed adjacent to each other in a second direction. The third type pixel is disposed adjacent to the first type pixel and the second type pixel in a first direction. A pitch of the third type pixel in the second direction is less than or equal to a sum of a pitch of the first type pixel in the second direction and a pitch of the second type pixel in the second direction.
Abstract:
A display panel including a plurality of pixels including a first pixel including a first blue sub-pixel, and a second pixel including a second blue sub-pixel, the second blue sub-pixel being configured to emit light having a wavelength different from that of the first blue sub-pixel and being adjacent to the first pixel.