Abstract:
A flexible touch screen panel with sensing electrodes formed of different materials is disclosed. In one aspect, the panel includes a substrate, a plurality of first and second sensing electrodes, a plurality of first and second position detection lines, and a pad portion. The substrate is divided into an active area, and first and second non-active area formed at the outside of the active area. The plurality of first sensing electrodes are arranged along a first direction and the plurality of second sensing electrodes are arranged along a second direction in the active area. The plurality of first and second position detection lines are formed in the first non-active area, and respectively connected to the plurality of first and second sensing electrodes. The pad portion is formed in the second non-active area, and has a plurality of pads electrically connected to the plurality of first and second position detection lines. The first and second sensing electrodes are formed of different materials from each other.
Abstract:
The present invention relates to a flexible touch screen panel. A flexible touch screen panel includes a substrate, first sensing cells formed on the substrate and connected to each other in a first direction, second sensing cells formed on the substrate and connected to each other in a second direction intersected with the first direction, first connection patterns connecting the first sensing cells to each other in the first direction, and second connection patterns connecting the second sensing cells to each other in the second direction. The first connection patterns include at least one opening part.
Abstract:
A method of making a touch screen panel includes providing a substrate assembly and a multi-layered film. The substrate assembly includes a substrate, and first and second sensing electrodes formed over the substrate. The multi-layered film includes a first conductive photosensitive layer, a second conductive photosensitive layer, and an insulation photosensitive layer. The insulation photosensitive layer has a light sensitivity different from that of at least one of the first and second conductive photosensitive layers. The method further includes forming insulators by exposing and developing the insulation photosensitive layer, and forming bridges and insulators by exposing and developing the second conductive photosensitive layer. The substrate assembly and the multi-layered film are assembled to form the touch panel.
Abstract:
A flexible touch screen panel with sensing electrodes formed of different materials is disclosed. In one aspect, the panel includes a substrate, a plurality of first and second sensing electrodes, a plurality of first and second position detection lines, and a pad portion. The substrate is divided into an active area, and first and second non-active area formed at the outside of the active area. The plurality of first sensing electrodes are arranged along a first direction and the plurality of second sensing electrodes are arranged along a second direction in the active area. The plurality of first and second position detection lines are formed in the first non-active area, and respectively connected to the plurality of first and second sensing electrodes. The pad portion is formed in the second non-active area, and has a plurality of pads electrically connected to the plurality of first and second position detection lines. The first and second sensing electrodes are formed of different materials from each other.
Abstract:
A touch panel includes: a substrate having a first region and a second region. A plurality of sensing cells are disposed in the first region and a pad portion is disposed in the second region. An insulating interlayer is disposed on the plurality of sensing cells, a connection pattern is disposed on the insulating interlayer, with the connection pattern being electrically connected to adjacent sensing cells through contact holes. A transparent conductive pattern is disposed in the second region and on the insulating interlayer, with the transparent conductive pattern being electrically connected to the plurality of sensing cells and the pad portion.
Abstract:
A touch screen panel includes a substrate, sensing electrodes, outer wirings, contact units, and at least one dummy pattern. The substrate includes an active region and a non-active region, the non-active region disposed outside the active region. The sensing electrodes are disposed in the active region. The outer wirings are disposed in the non-active region. Each of the outer wirings is connected to a respective group of the sensing electrodes. The contact units connect the respective groups of sensing electrodes to the outer wirings. The at least one dummy pattern is disposed between adjacent contact units of the contact units.
Abstract:
A flexible touch screen panel includes a substrate, sensing patterns, sensing lines, and at least one bending sensor. The substrate is divided into an active area and a non-active area around the active area. The sensing patterns are on the active area of a first surface of the substrate. The sensing lines are on the non-active area of the first surface of the substrate and connected to the sensing patterns. The at least one bending sensor is implemented with a plurality of sensing patterns at an edge region in the active area. In the flexible touch screen panel, the substrate is configured to be bent along a folding axis in a first direction, and the at least one bending sensor is at a region along the folding axis.
Abstract:
A touch screen panel includes a substrate, sensing electrodes, outer wirings, contact units, and at least one dummy pattern. The substrate includes an active region and a non-active region, the non-active region disposed outside the active region. The sensing electrodes are disposed in the active region. The outer wirings are disposed in the non-active region. Each of the outer wirings is connected to a respective group of the sensing electrodes. The contact units connect the respective groups of sensing electrodes to the outer wirings. The at least one dummy pattern is disposed between adjacent contact units of the contact units.
Abstract:
An exemplary embodiment of the present invention discloses a method of manufacturing a touch panel, the method including, forming a plurality of sensing cells in a first region of a substrate, forming an insulating interlayer on the plurality of sensing cells, removing at least a portion of the insulating interlayer to form contact holes exposing the plurality of sensing cells, and forming a connection pattern and a transparent conductive pattern on the insulating interlayer simultaneously, wherein the connection pattern is electrically connected to adjacent sensing cells, and the transparent conductive pattern is disposed in a second region of the substrate outside of the first region.
Abstract:
A method of making a touch screen panel includes providing a substrate assembly and a multi-layered film. The substrate assembly includes a substrate, and first and second sensing electrodes formed over the substrate. The multi-layered film includes a first conductive photosensitive layer, a second conductive photosensitive layer, and an insulation photosensitive layer. The insulation photosensitive layer has a light sensitivity different from that of at least one of the first and second conductive photosensitive layers. The method further includes forming insulators by exposing and developing the insulation photosensitive layer, and forming bridges and insulators by exposing and developing the second conductive photosensitive layer. The substrate assembly and the multi-layered film are assembled to form the touch panel.