Abstract:
An organic light emitting display device includes a substrate, an insulation layer structure, a light emitting layer, and an optical module. The substrate has an opening region, a peripheral region surrounding the opening region, and a display region surrounding the peripheral region. An opening is defined through the substrate in the opening region. The insulation layer structure is disposed in the display region and the peripheral region on the substrate. The light emitting layer is disposed on the insulation layer structure, and extends in a first direction from the display region into the opening region. A first opening is defined through the light emitting layer in the peripheral region. The optical module is disposed in the opening of the substrate.
Abstract:
A thin film transistor (TFT) array substrate is disclosed. In one aspect, the substrate includes a buffer layer formed over a substrate, a storage capacitor formed in the buffer layer and including a first electrode and a second electrode surrounding and insulated from the first electrode and a driving TFT formed over the buffer layer.
Abstract:
An organic light emitting display device includes a substrate, an insulation layer structure, a light emitting layer, and an optical module. The substrate has an opening region, a peripheral region surrounding the opening region, and a display region surrounding the peripheral region. An opening is defined through the substrate in the opening region. The insulation layer structure is disposed in the display region and the peripheral region on the substrate. The light emitting layer is disposed on the insulation layer structure, and extends in a first direction from the display region into the opening region. A first opening is defined through the light emitting layer in the peripheral region. The optical module is disposed in the opening of the substrate.
Abstract:
An organic light emitting display panel includes an organic light emitting element, an encapsulation layer sealing the organic light emitting element, a power electrode providing a power voltage to the organic light emitting element, and a partial wall preventing an organic material from flowing while the encapsulation layer is formed. The partition wall includes a base dam covering one side of the power electrode, a first dam covering one side of the base dam, a second dam covering the other side of the base dam, a third dam covering one side of the first dam, and a fourth dam covering one side of the second dam.
Abstract:
An organic light emitting display device includes a display panel and an optical module. The display panel includes a substrate, a light emitting structure, and a first wall structure. The substrate has an opening region, a peripheral region surrounding the opening region, and a display region surrounding the peripheral region, where a first groove defined in the peripheral region and an opening is defined in the opening region. The light emitting structure is disposed in the display region on the substrate. The first wall structure is disposed within the first groove of the substrate. The optical module is disposed in the opening.
Abstract:
A display apparatus includes an encapsulation layer, a display device, a touch layer, and an organic insulating layer. The encapsulation layer is on and covers the display device. The touch layer is above the encapsulation layer and includes a plurality of sensing electrodes, each of which includes a conductive layer having a first metal layer, a second metal layer above the first metal layer, and a third metal layer between the first metal layer and the second metal layer and exposed side surfaces. The organic insulating layer is above and covers the touch layer and is spaced apart from the side surfaces of the third metal layer.
Abstract:
A display device includes a transmission area in a display area and includes a groove in a non-display area surrounding the transmission area and may minimize the occurrence of defective pixels because a groove forming process includes a process of forming a protection layer covering an emission area before formation of a mask layer and a process of removing the protection layer after removal of the mask layer.
Abstract:
An optical sensor includes: a sensing unit including a first sensing electrode, a second sensing electrode spaced apart from the first sensing electrode, and a sensing layer between the first sensing electrode and the second sensing electrode, the sensing layer containing amorphous silicon and germanium (Ge) ions impregnated in the amorphous silicon; and an optical pattern unit on the sensing unit and including a light shielding pattern and a plurality of transmission patterns in the light shielding pattern, wherein the sensing layer includes a first region, a second region, and a third region sequentially arranged from a boundary between the second sensing electrode and the sensing layer toward the first electrode, and a concentration of the germanium (Ge) ions in the amorphous silicon is relatively higher in the second region than in the first region and the third region.
Abstract:
A substrate for a display apparatus includes a substrate, and a capacitor on a first surface of the substrate. The capacitor includes a first electrode, a second electrode facing the first electrode, and a dielectric layer between the first electrode and the second electrode. Here, the substrate has a first hole penetrating through the substrate in an area corresponding to a part of the first electrode of the capacitor, and a first conductive material is in the first hole.
Abstract:
A thin film transistor (TFT) array substrate is disclosed. In one aspect, the substrate includes a buffer layer formed over a substrate, a storage capacitor formed in the buffer layer and including a first electrode and a second electrode surrounding and insulated from the first electrode and a driving TFT formed over the buffer layer.