Abstract:
An organic light emitting diode (OLED) display includes a pixel part on a substrate, the pixel part being configured to display an image, a peripheral part at a peripheral area of the pixel part, the peripheral part including a chip on film connection part, and a chip on film connected to the chip on film connection part, the chip on film connection part including a chip on film bonding part, the chip on film being attached to the chip on film bonding part, and an array test part separated from the chip on film bonding part, the array test part being contacted with a probe pin.
Abstract:
An organic light emitting diodes display (OLEDD) includes means for implementing a capacitive touch position sensing panel and it (the OLEDD) is comprised of: a lower substrate; a driving element formed on the lower substrate; a first electrode connected to the driving element; an organic emission layer formed on the first electrode; a second electrode formed on the organic emission layer; a resistance lowering wire formed within the same layer as the first electrode and connected to the second electrode; an upper substrate disposed on the second electrode; and a plurality of Rx wires formed on the upper substrate and separated from each other, wherein the material of the second electrode is used to form a plurality of Tx wires separated from each other where the Tx and Rx wires define the capacitive touch position sensing panel.
Abstract:
A thin film transistor (TFT) includes a scan line on a substrate, the scan line including a straight portion extending along a first direction, an active layer including an oxide semiconductor and overlapping the straight portion of the scan line, the active layer having a first region, a second region, and a third region that are linearly and sequentially aligned along the first direction, a first insulating layer between the active layer and the scan line, a first electrode connected to the first region of the active layer, and a second electrode connected to the third region of the active layer.
Abstract:
A thin film transistor (TFT) includes a scan line on a substrate, the scan line including a straight portion extending along a first direction, an active layer including an oxide semiconductor and overlapping the straight portion of the scan line, the active layer having a first region, a second region, and a third region that are linearly and sequentially aligned along the first direction, a first insulating layer between the active layer and the scan line, a first electrode connected to the first region of the active layer, and a second electrode connected to the third region of the active layer.
Abstract:
A display panel includes: a substrate including a first area, a second area forming a predetermined angle with the first area, and a first bending area between the first area and the second area; a first display unit and a first embedded circuit unit in the first area of the substrate; and a second display unit and a second embedded circuit unit in the second area of the substrate.
Abstract:
A display apparatus and an organic display apparatus are disclosed. In one aspect, the display apparatus includes a display substrate divided into a display region for displaying an image via a plurality of pixels for emitting light and a non-display region around the display region. It includes a pad unit formed on the non-display region. It also includes a fan-out unit for connecting the display region and the pad unit. It further includes a plurality of line groups sequentially formed, wherein each line group includes a first fan-out line, a second fan-out line insulated from the first fan-out line by a first insulating layer, and a third fan-out line insulated from the second fan-out line by a second insulating layer, and wherein the third fan-out line at least partially overlaps with at least one of the first and second fan-out lines.
Abstract:
A display panel includes: a substrate including a first area, a second area forming a predetermined angle with the first area, and a first bending area between the first area and the second area; a first display unit and a first embedded circuit unit in the first area of the substrate; and a second display unit and a second embedded circuit unit in the second area of the substrate.
Abstract:
A display apparatus and an organic display apparatus are disclosed. In one aspect, the display apparatus includes a display substrate divided into a display region for displaying an image via a plurality of pixels for emitting light and a non-display region around the display region. It includes a pad unit formed on the non-display region. It also includes a fan-out unit for connecting the display region and the pad unit. It further includes a plurality of line groups sequentially formed, wherein each line group includes a first fan-out line, a second fan-out line insulated from the first fan-out line by a first insulating layer, and a third fan-out line insulated from the second fan-out line by a second insulating layer, and wherein the third fan-out line at least partially overlaps with at least one of the first and second fan-out lines.